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Abstract

This paper studies covariate adjusted estimation of the average treatment effect
in stratified experiments. We work in a general framework that includes matched
tuples designs, coarse stratification, and complete randomization as special cases.
Regression adjustment with treatment-covariate interactions is known to weakly im-
prove efficiency for completely randomized designs. By contrast, we show that for
stratified designs such regression estimators are generically inefficient, potentially
even increasing estimator variance relative to the unadjusted benchmark. Motivated
by this result, we derive the asymptotically optimal linear covariate adjustment for
a given stratification. We construct several feasible estimators that implement this
efficient adjustment in large samples. In the special case of matched pairs, for exam-
ple, the regression including treatment, covariates, and pair fixed effects is asymp-
totically optimal. We also provide novel asymptotically exact inference methods
that allow researchers to report smaller confidence intervals, fully reflecting the effi-
ciency gains from both stratification and adjustment. Simulations and an empirical
application demonstrate the value of our proposed methods.
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1 Introduction

This paper studies covariate adjusted estimation of the average treatment effect (ATE)
in stratified experiments. Researchers often make use of both stratified treatment as-
signment and ex-post covariate adjustment to improve the precision of experimental esti-
mates. Indeed, out of a survey of over 50 experimental papers published in the AER and
AEJ between 2018-2023, we found that 57% use stratified randomization, and 80% used
some form of ex-post covariate adjustment. An influential paper by Lin (2013) showed in
a design-based setting that the regression estimator with full treatment-covariate interac-
tions is always asymptotically weakly more efficient than difference of means estimation
for completely randomized designs. Negi and Wooldridge (2021) extended these results
to estimation of the ATE using data sampled from a super-population. However, ques-
tions remain about the interaction between stratification and regression adjustment and
the implications of combining these methods for both estimator efficiency and the power
and validity of inference methods. To study these questions, we work in the stratified
randomization framework of Cytrynbaum (2023), which includes matched tuples designs
(e.g. matched pairs), coarse stratification, and complete randomization as special cases.

We show that the Lin (2013) interacted regression adjustment is generically ineffi-
cient in the family of linearly adjusted estimators, with asymptotic efficiency only in the
limiting case of complete randomization. Motivated by this finding, we characterize the
efficient linear covariate adjustment for a given stratified design, providing several new
estimators that achieve the optimal variance.

Our first result derives the optimal linear adjustment coefficient for a given stratifi-
cation. We show that asymptotically the interacted regression estimator uses the wrong
objective function, minimizing a marginal variance objective that is totally insensitive
to the stratification. By contrast, the optimal adjustment coefficient minimizes a mean-
conditional variance objective, conditional on the covariates used to stratify. Intuitively,
the efficient covariate adjustment is tailored to the stratification, ignoring fluctuations of
the estimator that are predictable by the stratification covariates. Section 3.2 draws an
interesting connection with partially linear regression (Robinson (1988)), showing that
efficient linear adjustment of a stratified design is asymptotically equivalent to doubly-
robust semiparametric adjustment of an iid design. Intuitively, stratification contributes
the nonparametric component of the semiparametric adjustment function.

Our second set of results develops feasible versions of the optimal linear adjustment
derived in Section 3.1. First, we show that if the conditional expectation of the adjust-
ment covariates is linear in a known set of transformations of the stratification variables,
then adding the latter to the interacted regression restores optimality. Next we relax
this assumption, providing four different regression estimators that are asymptotically
efficient under weak conditions. For matched pairs experiments or in settings with lim-
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ited treatment effect heterogeneity, the non-interacted regression with a full set of pair
fixed effects is asymptotically efficient. More generally, we show asymptotic optimality of
within-stratum (inconsistently) partialled versions of the Lin and tyranny-of-the-minority
estimators (Lin (2013)). We also define a “group OLS” estimator, extending a proposal
of Imbens and Rubin (2015) for matched pairs experiments to a larger class of designs.
We show that this group OLS estimator is also asymptotically optimal.

Our final contribution is to develop novel asymptotically exact inference methods
for covariate adjusted estimation under stratified designs. Confidence intervals based
on the usual heteroskedasticity robust variance estimator are known to be conservative
in stratified experiments (Bai et al. (2021)). By contrast, the coverage probabilities
of our proposed confidence intervals converge to the specified nominal level, with no
overcoverage. Our approach applies to a generic family of linear covariate adjustments and
randomization schemes, including as special cases non-interacted regression adjustment,
the Lin (2013) interacted regression, and all of the other estimators considered in this
paper. Simulations and an empirical application to the experiment in Baysan (2022)
suggest that the usual robust confidence intervals can substantially overcover in stratified
experiments, while our confidence intervals have close to nominal coverage.

We present several extensions of our main results in the appendix. In the first, we
consider estimation and inference in stratified experiments with noncompliance. As a
simple corollary of our results on ATE estimation, we characterize the optimal linearly
adjusted Wald estimator for the LATE (Imbens and Angrist (1994)), construct a feasible
implementation of the efficient adjustment, and provide asymptotically exact inference
methods. We also study efficient linear adjustment for finely stratified designs with
non-constant treatment proportions, as in Cytrynbaum (2023), and briefly consider the
problem of efficient nonlinear adjustment.

There has been significant interest in treatment effect estimation under different ex-
perimental designs in the recent literature. Some papers studying covariate adjustment
under stratified randomization include Bugni et al. (2018), Fogarty (2018), Liu and Yang
(2020), Lu and Liu (2022), Ma et al. (2020), Reluga et al. (2022), Wang et al. (2021), Ye
et al. (2022), Zhu et al. (2022), and Chang (2023). These works differ from our paper in
at least one of the following ways: (1) studying inference on the sample average treat-
ment effect (SATE) rather than the ATE in a super-population, (2) restricting to coarse
stratification (stratum size going to infinity), or (3) proving weak efficiency gains but not
optimality. In a finite population setting, Zhu et al. (2022) shows asymptotic efficiency
of a projection-based estimator numerically equivalent to the “partialled Lin” approach
considered in Section 3.4.2. In the same setting, Lu and Liu (2022) prove efficiency of a
tyranny-of-the-minority style regression similar but not equivalent to one the considered
in Section 3.4.4. Both papers give conservative inference on the SATE, while we provide
asymptotically exact inference on the ATE using a generalized pairs-of-pairs (Abadie and
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Imbens (2008)) style approach. Remarks 3.19 and 3.22 in Section 3.4 below provide a
detailed comparison.

Relative to the above papers, the super-population framework considered here creates
some new technical challenges. For example, as pointed out in Bai et al. (2021), match-
ing units into data-dependent strata post-sampling produces a complicated dependence
structure between the treatment assignments and random covariates. We deal with this
using a tight-matching condition (Equation 2.1) and martingale CLT analysis similar
to Cytrynbaum (2022). This setting also has analytical advantages, which allow us to
establish new conceptual results. For example, the population level characterization of
the optimal adjustment coefficent in Section 3.1 allows us to give explicit necessary and
sufficient conditions for the efficiency of several commonly used regression estimators.
The efficiency of interacted regression under a “rich covariates” condition, as well as the
equivalence between optimal linear adjustment of stratified designs and doubly-robust
semiparametric adjustment appear to be new observations in this literature. To the best
of our knowledge, we give the first asymptotically exact inference on the ATE for general
covariate adjusted estimators under finely stratified randomization.

Independently, Bai et al. (2024) study covariate adjustment under matched pairs ran-
domization in a super-population framework. They also find that regression adjustment
without pair fixed effects may be inefficient, while adding pair fixed effects restores effi-
ciency. Relative to our work, they additionally study regularized regression adjustment
under high-dimensional asymptotics, which we do not consider. By contrast, we study
more general forms of stratification, allowing coarse and fine stratification with arbitrary
treatment proportions p 6= 1/2. For such designs, the strata fixed effects estimator may
still be inefficient. To fix this, we introduce novel forms of linear adjustment that are
efficient under general stratified designs.

The rest of the paper is organized as follows. In Section 2 we define notation and
introduce the family of stratified designs that we will consider throughout the paper.
Section 3 gives our main results, characterizing optimal covariate adjustment and con-
structing efficient estimators. Section 4 provides asymptotically exact inference on the
ATE for generic linearly adjusted estimators. In Sections 5 and 6, we study the finite
sample properties of our method, including both simulations and an empirical application
to the experiment in Baysan (2022). Section 7 concludes with some recommendations for
practitioners.

2 Framework and Stratified Designs

For a binary treatment d ∈ {0, 1}, let Yi(1), Yi(0) denote the treated and control
potential outcomes, respectively. For treatment assignment Di, let Yi = Yi(Di) =

DiYi(1)+(1−Di)Yi(0) be the observed outcome. Let Xi denote covariates. Consider data
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(Xi, Yi(1), Yi(0))ni=1 sampled i.i.d. from a super-population of interest. We are interested
in estimating the average treatment effect in this population, ATE = E[Y (1)−Y (0)]. Af-
ter sampling units i = 1, . . . , n, treatments D1:n are assigned by stratified randomization.
In particular, we use the “local randomization” framework introduced in Cytrynbaum
(2022).

Definition 2.1 (Local Randomization). Let treatment proportions p = a/k with gcd(a, k) =

1.1 Suppose that n is divisible by k for notational simplicity. Partition the experimen-
tal units into n/k disjoint groups g with {1, . . . , n} =

⋃
g g disjointly and |g| = k. Let

ψ(X) ∈ Rdψ denote a vector of stratification variables. Suppose that the groups that
satisfy a homogeneity condition with respect to ψ(X) such that

1

n

∑
g

∑
i,j∈g

|ψ(Xi)− ψ(Xj)|22 = op(1). (2.1)

Require that the groups only depend on the stratification variables ψ1:n and data-independent
randomness πn, so that g = g(ψ1:n, πn) for each g. Independently for each |g| = k, draw
treatment variables (Di)i∈g by setting Di = 1 for exactly a out of k units, completely at
random. For a stratification satisfying these conditions, we denote D1:n ∼ Loc(ψ, p).

Example 2.2 (Matched Tuples). Equation 2.1 requires units in a group to have similar
ψ(Xi) values and can be thought of as a tight-matching condition. Cytrynbaum (2023)
provides an iterative pairing algorithm to match units into groups that provably satisfy
this condition for any k. Drawing treatments D1:n ∼ Loc(ψ, p) produces a “matched
k-tuples” design for p = a/k. Matched pairs corresponds to the case p = 1/2.

Example 2.3 (Complete Randomization). We say variables D1:n are completely ran-
domized with treatment probability p if D1:n is drawn uniformly from all vectors d1:n

with di = 1 for exactly proportion p of the units. Formally, P (D1:n = d1:n) = 1/
(
n
pn

)
for all such vectors. We denote complete randomization by D1:n ∼ CR(p). Complete
randomization may be obtained in our framework by setting ψ = 1 and forming groups
|g| = k at random, which automatically satisfies Equation 2.1. For example, assigning 2

out of 3 units in each group to treatment gives a “random matched triples” representation
of complete randomization with p = 2/3.

Remark 2.4 (Coarse Stratification). Similarly, coarse stratification with large fixed
strata S(X) ∈ {1, . . . ,m} can also be obtained in our framework by setting ψ(X) = S(X)

and matching units with identical S(X) values into groups at random. Because of this,
our framework enables a unified asymptotic analysis for a wide range of stratifications.

Experiment Timing: Suppose that the experimenter does the following
1gcd(a, k) stands for greatest common divisor.
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(1) Samples units and observes their baseline covariates.

(2) Partitions the units into data-dependent groups g = g(ψ1:n, πn) that satisfy Equa-
tion 2.1 for some stratification variables ψ(X).

(3) Draws treatment assignments D1:n ∼ Loc(ψ, p), observes outcomes Yi(Di), and
forms an estimate of the ATE, potentially adjusting for covariates h(X).

We are agnostic about the exact time at which the covariates are observed, subject to
the constraints above. For example, it could be that only ψ(X) is observed at the design
stage, while the full vector X is collected later with the outcomes, and the experimenter
chooses to adjust for h(X) ⊆ X. Alternatively, the full vector X could be observed at
the design stage, but the experimenter chooses to only stratify on ψ(X), and adjusts for
h(X) ⊆ X at step (3). We may or may not have ψ(X) ⊆ h(X).2

Consider the unadjusted estimator given by the coefficient θ̂ on D in the regression
Y ∼ 1 + D. Before discussing covariate adjustment, we first state a helpful variance
decomposition for θ̂ that will be used extensively below. Let c(X) = E[Y (1) − Y (0)|X]

denote the conditional average treatment effect (CATE) and σ2
d(X) = Var(Y (d)|X) the

heteroskedasticity function. Define the balance function

b(X; p) = E[Y (1)|X]

(
1− p
p

)1/2

+ E[Y (0)|X]

(
p

1− p

)1/2

. (2.2)

We often denote b = b(X; p) in what follows. Cytrynbaum (2022) shows that if
D1:n ∼ Loc(ψ, p) then

√
n(θ̂ − ATE)⇒ N (0, V ) with

V = Var(c(X)) + E[Var(b|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
. (2.3)

The variance V is in fact the Hahn (1998) semiparametric variance bound3 for the
ATE (with covariates ψ(X)), providing a formal sense in which stratification does non-
parametric regression adjustment “by design.” The middle term is the most important for
our analysis below. For example, in this notation the difference in asymptotic efficiency
between stratifications ψ1 and ψ2 (for fixed p) is simply E[Var(b|ψ1)]−E[Var(b|ψ2)]. Note
also that E[Var(b|ψ)] ≤ Var(b) for any ψ, showing how stratification removes the variance
due to fluctuations that are predictable by ψ(X).

Moving beyond the difference of means estimator θ̂, suppose that at the analysis stage,
the experimenter has access to covariates h(X), which may strictly contain ψ(X). One
may try to further improve the efficiency of ATE estimation by regression adjustment

2Our asymptotic framework lets h(X), ψ(X) be fixed as n→∞.
3Armstrong (2022) shows that this variance bound also holds for stratified designs.
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using these covariates, either using standard the regression Y ∼ 1+D+h or the regression
Y ∼ 1 + D + h + Dh (with de-meaned covariates) studied in Lin (2013). We study
the interaction between covariate adjustment and stratification in Section 3.1 below,
characterizing the optimal linear adjustment.

3 Main Results

3.1 Efficient Linear Adjustment in Stratified Experiments

In this section, we begin by studying the efficiency of commonly used covariate-adjusted
estimators of the ATE under stratified randomization. Lin (2013) showed that in a com-
pletely randomized experiment, equivalent to D1:n ∼ Loc(ψ, p) with ψ = 1, regression
adjustment with full treatment-covariate interactions is asymptotically weakly more ef-
ficient than difference of means estimation. Negi and Wooldridge (2021) extended this
result to ATE estimation in the super-population framework that we use in this paper.
Interestingly, we show that this result is atypical. For a general stratified experiment
with ψ 6= 1, Lin (2013) style regression adjustment may be strictly inefficient relative
to difference of means. The problem is that the interacted regression solves the wrong
optimization problem, minimizing a marginal variance objective when, due to the strati-
fication, it should instead minimize a mean-conditional variance objective, conditional
on the stratification variables ψ. In fact, the Lin estimator is totally insensitive to
the stratification, estimating the same adjustment coefficient for any stratified design
D1:n ∼ Loc(ψ, p). Because of this, interacted regression is generically sub-optimal and in
some cases can even be strictly less efficient than difference of means. Before proceeding,
we state our main assumption.

Assumption 3.1 (Smoothness and Moment Conditions). Assume the following:

(i) The conditional expectations E[h(X)|ψ] and E[Y (d)|ψ] for d ∈ {0, 1} are Lipschitz
continuous in the stratification variables ψ.

(ii) The moments E[Y (d)4] < ∞ for d ∈ {0, 1} and E[|ht(X)|4] < ∞ for all 1 ≤ t ≤
dim(h), |ψ(X)|2 < K <∞ a.s. and Var(h) � 0.

Now we are ready to define the Lin estimator and state our first result. Denote
hi = h(Xi) and de-meaned covariates h̃i = hi − En[hi], with En[hi] ≡ n−1

∑n
i=1 hi. The

Lin estimator θ̂L is the coefficient on Di in the interacted regression

Yi ∼ 1 +Di + h̃i +Dih̃i. (3.1)

Define the within treatment arm covariate means h̄1 = En[hiDi]/En[Di] and h̄0 =

En[hi(1 − Di)]/En[1 − Di]. The Lin estimator θ̂L can be related to the difference of
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means estimator θ̂ as
θ̂L = θ̂ − γ̂′L(h̄1 − h̄0). (3.2)

Here, the adjustment coefficient γ̂L is γ̂L = (1 − p)(â1 + â0) + pâ0, where â0 and â1 are
the coefficients on h̃i and Dih̃i in Equation 3.1. The following theorem characterizes the
asymptotic properties of this estimator under stratified designs.

Theorem 3.2. Let Assumption 3.1 hold. If D1:n ∼ Loc(ψ, p) then the Lin estimator
√
n(θ̂L − ATE)⇒ N (0, V ) with

V = Var(c(X)) + E

[
Var(b− γ′Lh|ψ)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

The adjustment coefficient satisfies γ̂L
p→ γL with γL = argminγ∈Rdh Var(b− γ′h).

The variance V differs from the variance of the unadjusted estimator only in the middle
term, which changes from E[Var(b|ψ)] in the unadjusted case to E[Var(b − γ′Lh|ψ)] for
the interacted regression. Crucially, the second statement of Theorem 3.2 shows that
the adjustment coefficient γL attempts to minimize a marginal variance, instead of the
mean-conditional variance that shows up in V above. Because of this, the estimator may
be inefficient for general stratifications ψ 6= 1, since in general

γL = argmin
γ∈Rdh

Var(b− γ′h) 6= argmin
γ∈Rdh

E[Var(b− γ′h|ψ)] ≡ γ∗.

Observe that the Lin estimator is completely insensitive to the experimental design,
estimating the same adjustment coefficient γL = argminγ Var(b−γ′h) for any stratification
variables ψ(X). The following example shows that this can lead to strict inefficiency
relative to difference of means estimation.

Example 3.3 (Random Assignment to Class Size). Suppose Y (d) are student test scores
under random assignment to one of two class sizes d ∈ {0, 1}. Let h(X) be parent’s wealth
and ψ(X) previous year (baseline) test scores. Suppose parent’s wealth is predictive of
future test scores marginally so that Cov(h, Y (d)) > 0. Then Cov(h, b) > 0 and the Lin
coefficient is γL = Var(h)−1 Cov(h, b) > 0. However, if on average parent’s wealth has
no predictive power for test scores conditional on a student’s baseline scores (a proxy
for ability) then E[Cov(h, Y (d)|ψ)] = 0. In this case, regression adjustment for parent’s
wealth h(X) in an experiment stratified on the earlier scores ψ(X) will be strictly less
efficient than unadjusted estimation since

Vlin − Vunadj = E[Var(b− γ′Lh|ψ)]− E[Var(b|ψ)]

= −2γLE[Cov(h, b|ψ)] + γ2
LE[Var(h|ψ)] = γ2

LE[Var(h|ψ)] > 0
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An important special case occurs when the design is completely randomized (ψ = 1)
or if the covariates and stratification variables are independent h(X) ⊥⊥ ψ(X). In this
case, the Lin estimator is weakly more efficient than difference of means since we have

E[Var(b− γ′Lh|ψ)] = Var(b− γ′Lh) = min
γ

Var(b− γ′h) ≤ Var(b).

An analogue of Theorem 3.2 also holds for the non-interacted regression estimator
Yi ∼ 1 +Di + hi under stratified designs D1:n ∼ Loc(ψ, p). The non-interacted estimator
is known to be inefficient relative to difference of means even for completely randomized
experiments unless p = 1/2 or treatment effects are homogeneous. For completeness,
we give asymptotic theory and optimality conditions for this estimator under stratified
randomization in Section A.3 in the appendix.

We noted above that the Lin estimator θ̂L can be written in the canonical form θ̂L =

θ̂ − γ̂′L(h̄1 − h̄0). In fact, most commonly used adjusted estimators can be written in the
standard form θ̂adj = θ̂−γ̂′(h̄1−h̄0) for some γ̂, up to order Op(n

−1) factors. The following
theorem describes the asymptotic properties of general covariate-adjusted estimators θ̂adj
of this form. To avoid carrying around factors of p in our variance expressions, in what
follows we scale adjusted estimators by the normalization constant cp =

√
p(1− p).

Theorem 3.4. Let Assumption 3.1 hold. Suppose γ̂
p→ γ and consider the adjusted

estimator
θ̂adj = θ̂ − γ̂′(h̄1 − h̄0)cp.

If D1:n ∼ Loc(ψ, p) then
√
n(θ̂adj − ATE)⇒ N (0, V (γ)) with

V (γ) = Var(c(X)) + E

[
Var(b− γ′h|ψ)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
. (3.3)

We define a linearly-adjusted estimator to be asymptotically efficient if it globally
minimizes the asymptotic variance V (γ) in the previous theorem.

Definition 3.5 (Optimal Linear Adjustment). The estimator θ̂adj = θ̂ − γ̂′(h̄1 − h̄0)cp is
efficient for the design D1:n ∼ Loc(ψ, p) and covariates h(X) if γ̂ p→ γ∗ for an optimal
adjustment coefficient

γ∗ ∈ argmin
γ∈Rdh

E

[
Var(b− γ′h|ψ)

]
.

In particular, V (γ∗) = minγ∈Rdh V (γ).

Note that efficiency is defined relative to a design D1:n ∼ Loc(ψ, p) and covariates
h(X). Setting γ = 0 recovers unadjusted estimation, so any optimal estimator is in
particular weakly more efficient than difference of means.

Optimal Adjustment Coefficient. If E[Var(h|ψ)] � 0, then the optimization in
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Definition 3.5 is solved uniquely by a mean-conditional OLS coefficient

γ∗ = E[Var(h|ψ)]−1E[Cov(h, b|ψ)]. (3.4)

Intuitively, fine stratification makes treatment-control imbalances in the covariates
h(X) and the potential outcomes Y (d) that are predictable by ψ small enough that
they do not contribute to first-order asymptotic variance. Because of this, the optimal
covariate-adjusted estimator θ̂ − γ∗(h̄1 − h̄0)cp ignores such fluctuations, minimizing the
mean-conditional variance objective E[Var(b− γ′h|ψ)], instead of the marginal variance
Var(b− γ′h) targeted by the Lin estimator.

Optimal Covariates. Intuitively, the form of the variance in Equation 3.3 suggests
adjusting for variables h that contain predictive information not already contained in ψ.
The (unknown) optimal covariates are h∗ = b. In this case, γ∗ = 1 makes the middle
variance term identically zero, and θ̂adj achieves the Armstrong (2022) semiparametric
variance bound.

Sample Average Treatment Effect. Theorem 3.4 may be extended to covariate-
adjusted estimation of the sample average treatment effect SATE = En[Yi(1) − Yi(0)].
Defining the conditional treatment effect variance σ2

τ (X) = Var(Y (1)−Y (0)|X), one can
show that

√
n(θ̂ − SATE)⇒ N (0, VS(γ)) with

VS(γ) = E[Var(b− γ′h|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p
− σ2

τ (X)

]
. (3.5)

In particular, the optimal adjustment for estimating the ATE and the SATE are the
same, with γ∗SATE = γ∗.

Remark 3.6 (Non-Uniqueness). In general, the optimal adjustment coefficient γ∗ may
not be unique. For example, if h(x) = (z(ψ), w(x)) with z(ψ) a Lipschitz function of the
stratification variables, then the variance objective is constant in the coefficient on z(ψ)

E[Var(b− γ′zz − γ′ww|ψ)] = E[Var(b− γ′ww|ψ)] ∀γz ∈ Rdz .

In fact, our analysis shows that the adjustment term γ′z(z̄1 − z̄0) = op(n
−1/2) for any

coefficient γz in this case. Intuitively, since the covariate z(ψ) is already finely balanced
by stratifying on ψ(X), ex-post adjustment by z(ψ) cannot improve first-order efficiency.
However, there may still be finite sample efficiency gains from such adjustments, if the
covariates z(ψ) are not completely balanced by the stratification. Section 3.5 below
provides methods to further adjust for covariates that are functions of the stratification
variables.
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3.1.1 Extensions

Before continuing, we briefly mention some extensions to the framework above that are
studied in detail in Appendices A.1-A.4.

Experiments with Noncompliance. In settings with noncompliance, we may in-
stead consider estimation and inference on the local average treatment effect (LATE) of
Imbens and Angrist (1994). As a simple application of our main results, Section A.1
characterizes the optimal linear adjustment for estimating the LATE, constructs feasi-
ble efficient estimators, and provides asymptotically exact inference on the LATE under
stratified randomization with ex-post covariate adjustment.

Varying Treatment Proportions. Cytrynbaum (2023) extends Definition 2.1 to
allow fine stratification with non-constant assignment propensity p(ψ). Section A.2 in the
appendix characterizes the optimal adjustment coefficient for such designs and derives a
feasible efficient estimator.

Nonlinear Adjustment. In some settings, it may be more natural to use nonlinear
or nonparametric covariate adjustment to improve efficiency, for example in experiments
with binary outcomes. Section A.4 in the appendix characterizes the optimal adjustment
over a general function space H for finely stratified designs with varying propensity p(ψ).
Feasible estimation of the optimal nonlinear adjustment is an interesting problem that
we leave for future work.

3.2 Equivalence with Partially Linear Regression Adjustment

This section shows that optimal linear adjustment of a stratified design is as efficient as
semiparametric partially linear regression adjustment in an experiment with iid treat-
ments, with adjustment function that is linear in h(X) and nonparametric in ψ(X). This
suggests that experimenters stratify on a small set of covariates expected to be most pre-
dictive of outcomes at design-time, and (efficiently) adjust for the remaining covariates
ex-post. See below for a more detailed discussion of stratification vs. adjustment.

The main result of this section shows first-order asymptotic equivalence of the follow-
ing (design, estimator) pairs

(D1:n ∼ Loc(ψ, p), optimal linear) ⇐⇒ (Di
iid∼Bernoulli(p), optimal semiparametric).

To define the latter, consider the within-arm partially linear regression models

(g∗d, γ
∗
d) = argmin

g∈L2(ψ),γ∈Rdh
E[(Y (d)− g(ψ)− γ′h)2] (3.6)

for d ∈ {0, 1}. Define the partially linear adjustment function Fd(x) = g∗d(ψ(x))+h(x)′γ∗d
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and consider a Robins and Rotnitzky (1995) style augmented inverse propensity weighting
(AIPW) estimator

θ̂AIPW = En[F1(Xi)− F0(Xi)] + En

[
Di(Yi − F1(Xi))

p

]
− En

[
(1−Di)(Yi − F0(Xi))

1− p

]
.

The next theorem shows that optimal linear adjustment of the design D1:n ∼ Loc(ψ, p)

is asymptotically equivalent to optimal semiparametric adjustment with nonparametric
ψ(X) and linear h(X) components.

Theorem 3.7. Require Assumption 3.1 and suppose Di
iid∼Bernoulli(p). Then

√
n(θ̂AIPW−

ATE)⇒ N (0, V ∗) with

V ∗ = Var(c(X)) + min
γ∈Rdh

E

[
Var(b− γ′h|ψ)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

The limiting variance V ∗ is the same as the optimal linearly adjusted variance V (γ∗)

from Definition 3.5. Intuitively, stratification contributes the nonlinear component of the
optimal model Fd(x) above, while optimal adjustment contributes the linear component.
The optimal adjustment coefficient γ∗ =

√
1−p
p
γ1+

√
p

1−pγ0, for partially linear coefficients
γ1, γ0 defined in Equation 3.6 above.

Stratification vs. Regression Adjustment. Theorem 3.7 shows that stratifica-
tion provides nonparametric control over the fluctuations of the outcomes predictable by
ψ(X), while (linear) adjustment only provides linear control. In first-order asympotics,
this suggests that we stratify on all available covariates, since the variance V ∗ above is
minimized by setting ψ(X) = X. However, this may perform poorly in finite samples due
to a curse of dimensionality for stratification as dim(ψ) increases. For example, Cytryn-
baum (2023) shows the variance convergence rate nVar(θ̂) = V + Op(n

−2/(dim(ψ)+1)) for
the variance V in Equation 3.3, which may be slow even for moderate dim(ψ). Intuitively,
this suggests stratifying on a small set4 of covariates ψ(X) expected to be most predictive
of outcomes at design time, and planning to optimally adjust for less predictive covariates
h(X) ex-post.

The next two sections show how to construct linearly-adjusted estimators for the
design D1:n ∼ Loc(ψ, p) that achieve the optimal variance V ∗.

3.3 Efficiency by Rich Strata Controls

This section provides a “rich covariates” style condition on the relationship between ad-
justment covariates and stratification variables under which a simple parametric correc-

4It is difficult to give concrete guidance for choosing dim(ψ), since the relevant quantities such as
E[Var(b|ψ)] are not estimable at design-time, before we have outcome data. The rate above suggests
dim(ψ) = o(log n) to achieve the variance V in Equation 3.3.
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tion of the Lin estimator is fully efficient. The basic idea is to include rich functions z(ψ)

of the stratification variables in the adjustment set alongside the additional covariates we
would like to adjust for ex-post. The main result of this section shows that including z(ψ)

as covariates forces the Lin estimator to solve the mean-conditional variance minimization
problem of Definition 3.5, restoring asymptotic optimality. An analogous result holds for
the non-interacted regression estimator Y ∼ 1+D+h if p = 1/2. As a simple application
of this section’s results, Example 3.12 shows that for coarsely stratified designs the Lin
estimator with leave-one-out strata indicators is efficient.

Consider adjusting for covariates h(X) = (w(X), z(ψ)). The main assumption of
this section requires that the conditional mean E[w|ψ] is well-approximated by known
transformations z(ψ) of the stratification variables.

Assumption 3.8. There exist c ∈ Rdw and Λ ∈ Rdw×dz such that E[w|ψ] = c+ Λz(ψ).

Our next theorem shows that adding such transformations z(ψ) to the adjustment set
recovers full efficiency for the Lin estimator.

Theorem 3.9. Suppose Assumptions 3.1 and 3.8 hold. Fix adjustment set h(x) =

(w(x), z(ψ)). Then the Lin estimator θ̂L is fully efficient for the design D1:n ∼ Loc(ψ, p).
In particular,

√
n(θ̂L − ATE)⇒ N (0, V ∗) with

V ∗ = Var(c(X)) + min
γ∈Rdh

E

[
Var(b− γ′h|ψ)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

Moreover, the asymptotic variance has

min
γ∈Rdh

E[Var(b− γ′h|ψ)] = min
α∈Rdw

E[Var(b− α′w|ψ)].

In practice, Theorem 3.9 suggests including flexible functions z(ψ) of the stratification
variables in the adjustment set. The proof is given in Section A.6 of the supplement. The
following corollary follows shows that if p = 1/2 (matched pairs) or if treatment effect
heterogeneity is limited then the non-interacted regression Y ∼ 1 +D + w + z with rich
strata controls z(ψ) is also asymptotically efficient.

Corollary 3.10. Suppose additionally that p = 1/2 or E[Cov(Y (1) − Y (0), w|ψ)] = 0.
Then the coefficient θ̂N on Di in the regression Y ∼ 1 + D + w + z is asymptotically
efficient.

The condition E[Cov(Y (1)− Y (0), w|ψ)] = 0 limits the explanatory power of covari-
ates w for treatment effect heterogeneity, conditional on the stratification variables.

Remark 3.11 (Indirect Efficiency Gain). The second statement of the theorem shows
that optimal adjustment for h(X) is as efficient as optimal adjustment for the subvector
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w(X) ⊆ h(X) = (w(X), z(ψ)). In this sense, the efficiency improvement due to includ-
ing z(ψ) is indirect. Indeed, our analysis shows that θ̂ − γ′z(z̄1 − z̄0) = θ̂ + op(n

−1/2)

for any γz ∈ Rdz , so adjustment for z(ψ) alone cannot affect the first-order asymptotic
variance. Intuitively, we are just using the inclusion of z(ψ) as a device to “tilt” the coef-
ficient on w(X), forcing the Lin estimator to solve the correct mean-conditional variance
optimization problem.

The next example uses Theorem 3.9 to show that including leave-one-out strata in-
dicators as covariates in the Lin estimator restores asymptotic efficiency for coarsely
stratified designs.

Example 3.12 (Coarse Stratification). Consider stratified randomizationD1:n ∼ Loc(S, p)

with fixed strata S(x) ∈ {1, . . . ,m}. Let the adjustment covariates be h(x) = (w(x), z(s))

with leave-one-out strata indicators z(Si) = (1(Si = k))m−1
k=1 . In this case, Assumption 3.8

is automatically satisfied since we can write E[w|S] = c + Λz with c = E[w|S = m] and
Λjk = (E[wj|S = k]−E[wj|S = m])jk. Then by Theorem 3.9, the Lin estimator θ̂L with
covariates hi = (wi, zi) is efficient. In particular, we have

√
n(θ̂L − ATE) ⇒ N (0, V ∗)

with optimal variance

V ∗ = Var(c(X)) + min
γ
E

[
Var(b− γ′w|S)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

Similarly, by Corollary 3.10 if p = 1/2 then including leave-one-out strata fixed effects in
the non-interacted regression restores efficiency.

Remark 3.13 (Fine Stratification). Note that the argument in Example 3.12 only applies
to coarse stratification, where the strata S(x) ∈ {1, . . . ,m} are data-independent and
fixed as n → ∞. For fine stratification D1:n ∼ Loc(ψ, p) with continuous covariates
ψ(x), the strata are data-dependent and number of strata m � n, so Theorem 3.23 does
not apply. Indeed, for matched pairs the Lin regression in Example 3.12 would have
n + 2 dim(h) > n covariates, producing collinearity. This collinearity problem occurs
more generally, see Remark 3.18 below for further discussion.

Leaving behind the rich covariates Assumption 3.8, the next section provides new
adjusted estimators that are fully efficient for any design in the class D1:n ∼ Loc(ψ, p)

under weak conditions.

3.4 Generic Efficient Adjustment

In this section, we study several adjusted estimators that are asymptotically efficient un-
der weak conditions for any stratified design D1:n ∼ Loc(ψ, p). For matched pairs designs,
or in settings with limited treatment effect heterogeneity, the non-interacted regression

14



including treatment, covariates, and pair fixed effects is efficient. More generally, we show
that the following estimators are efficient under weak assumptions.

(1) PL - A partialled Lin estimator with within-stratum (inconsistently) partialled
covariates.

(2) GO - A “Group OLS” estimator, generalizing a proposal of Imbens and Rubin
(2015) for matched pairs designs.

(3) TM - A tyranny-of-the-minority (ToM) estimator for stratified designs.

The main new condition we impose in this section is that the adjustment covariates
are not collinear, conditionally on the stratification variables. This guarantees that the
optimal adjustment coefficient γ∗ is unique with γ∗ = E[Var(h|ψ)]−1E[Cov(h, b|ψ)], as
discussed in Section 3.1.

Assumption 3.14. The conditional variance satisfies E[Var(h|ψ)] � 0.

Note that this assumption rules out adjustment for functions h(ψ) of the stratification
variables. To see why it is necessary, consider that, for example, in a regression with full
strata fixed effects Y ∼ D + h + zn, covariates hi = h(ψi) would be asymptotically
collinear with the strata fixed effects zn = (1(i ∈ gj))n/kj=1. More intuitively, the problem
is that h(ψ) has too little residual variation within local regions of ψ(X) space defining
the fine strata. We noted earlier that θ̂ − α′(h̄1 − h̄0) = θ̂ − op(n−1/2) for any α ∈ Rdh ,
so such adjustment cannot improve first-order efficiency. Nevertheless, one may still
wish to adjust for h(ψ) to correct finite sample imbalances not controlled by the design.
Adjustment for such variables needs to be handled slightly differently, and we construct
modified efficient estimators for this purpose in Section 3.5 below.

3.4.1 Strata Fixed Effects Estimator

Recall that for p = a/k, a finely stratified design D1:n ∼ Loc(ψ, p) partitions the experi-
mental units {1, . . . , n} into n/k disjoint groups g. Define the fixed effects estimator θ̂FE
by the least squares equation

Yi = θ̂FEDi + γ̂′FEhi +

n/k∑
j=1

âj1(i ∈ gj) + ei. (3.7)

The next theorem shows that θ̂FE is fully efficient in the case of matched pairs or if
treatment effect heterogeneity is limited, but may be inefficient in general.

Theorem 3.15. Suppose Assumptions 3.1 and 3.14 hold. The estimator has represen-
tation θ̂FE = θ̂ − γ̂′FE(h̄1 − h̄0) + Op(n

−1). If D1:n ∼ Loc(ψ, p) then
√
n(θ̂FE − ATE) ⇒
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N (0, V ) with variance

V = Var(c(X)) + E[Var(b− γ′FEh|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

and coefficient γFE = argminγ∈Rdh E[Var(f − γ′h|ψ)] for target function

f(x) = m1(x)

√
p

1− p
+m0(x)

√
1− p
p

.

The function f 6= b in general. If p = 1/2, then f = b and the fixed effects estimator is
efficient. If p 6= 1/2, it is efficient if and only if E[Cov(h, Y (1)− Y (0)|ψ)] = 0.

See Section A.7 for the proof. Asymptotically exact inference for the ATE using θ̂FE
is available using the tools in Section 4.

Remark 3.16 (Conditions for Efficiency). If p = 1/2 then f = b and θ̂FE is efficient.
More generally, f(x) 6= b(x) and θ̂FE solves the wrong variance minimization problem,
effectively targeting the wrong linear combination of outcomes. The necessary and suffi-
cient condition E[Cov(h, Y (1)−Y (0)|ψ)] = 0 requires that treatment effect heterogeneity
is not explained by the covariates h(X), conditional on the stratification variables.

In the rest of this section, we develop estimators that are fully efficient for any finely
stratified design, without imposing any assumptions on treatment effect heterogeneity or
treatment proportions.

3.4.2 Partialled Lin Estimator

First, we define a partialled version of the Lin estimator. Let g(i) denote the group that
unit i belongs to and define the within-group partialled covariates

ȟi = hi −
1

k

∑
j∈g(i)

hj.

For example, if k = 2 this is just the within-pair covariate difference ȟi = (1/2)(hi−hm(i)),
where i is matched to m(i). We can think of ȟi as an inconsistent but approximately
unbiased signal for the non-parametrically residualized covariate hi −E[hi|ψi]. Next, we
use these partialled covariates in the Lin regression

Y ∼ 1 +Di + ȟi +Diȟi. (3.8)

Define the partialled Lin estimator θ̂PL to be the coefficient on Di in this regression.
For reference, similarly to the Lin regression we may write this in the standard form
θ̂PL = θ̂ − γ̂′PL(h̄1 − h̄0)cp with adjustment coefficient γ̂PL = (â1 + â0)

√
1−p
p

+ â0

√
p

1−p ,
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where â0 and â1 are coefficients on ȟi and Diȟi.

Our main result in Theorem 3.23 below shows that the partialled Lin estimator θ̂PL
is asymptotically efficient in the sense of Definition 3.5, with γ̂PL

p→ γ∗ for the optimal
adjustment coefficient γ∗.

Remark 3.17 (Intuition for Optimality). Theorem 3.4 showed that an estimator θ̂ −
γ̂(h̄1 − h̄0)cp is efficient if γ̂ p→ γ∗ and γ∗ solves the conditional-mean variance problem
γ∗ ∈ argminγ E[Var(b−γ′h|ψ)]. By using within-stratum partialled regressors ȟi, we force
the Lin estimator to only use covariate signal hi − E[hi|ψi] that is mean-independent of
the stratification variables.

Remark 3.18 (Treatment-Strata Interactions). As an alternative to θ̂PL, one may at-
tempt to use the Lin regression Yi ∼ (1, hi, g

n(i)) + Di(1, hi, g
n(i)) with leave-one-out

strata fixed effects gn(i) = (1(i ∈ gj))
n/k−1
j=1 . Unfortunately, this produces collinear re-

gressors for p = a/k if either a = 1 or a = k − 1, which includes the case of matched
pairs. To see the issue, one can show by Frisch-Waugh that in contrast to Equation
3.8 above, this estimator partials covariates hi separately in each treatment arm, using
ȟi1 = hi−a−1

∑
j∈g(i) hjDj if Di = 1 and ȟi0 = hi− (k−a)−1

∑
j∈g(i) hj(1−Dj) if Di = 0.

For instance, if a = 1 then this is ȟi = hi − hi = 0 for all i, showing collinearity. In the
case 1 < a < k − 1 where this estimator is feasible, it is asymptotically equivalent to the
partialled Lin estimator. However, finite sample properties will be worse due to noisier
within-arm partialling.

Remark 3.19. A calculation shows that our estimator θ̂PL is numerically equivalent
to a regression estimator proposed in Zhu et al. (2022), which the authors derive alter-
nately through an optimal projection argument. They study estimation of the SATE

under stratified randomization in a finite population framework, providing conservative
inference. They do not derive the exact form of the asymptotic variance, instead leaving
it as an infinite sum, which they assume converges to some limit. By contrast, we de-
rive the exact form of the asymptotic variance under the data-adaptive stratifications in
Definition 2.1, enabling asymptotically exact inference on the ATE using θ̂PL.

3.4.3 Group OLS Estimator

Next, we generalize an estimator proposed by Imbens and Rubin (2015) for covariate
adjustment in matched pairs experiments to more general stratified designs. For each
group of units g = 1, . . . , n/k in the design D1:n ∼ Loc(ψ, p), define the within-group
difference of means of outcomes and covariates

yg =
1

k

∑
i∈g

YiDi

p
− 1

k

∑
i∈g

Yi(1−Di)

1− p
and hg =

1

k

∑
i∈g

hiDi

p
− 1

k

∑
i∈g

hi(1−Di)

1− p
.
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For any group-indexed array (xg)g, denote Eg[xg] = k
n

∑
g xg. Define the Group OLS

estimator θ̂G by the regression

yg = θ̂G + γ̂′Ghg + eg (3.9)

with Eg[(1, hg)eg] = 0. For motivation, note that if h = 0 then this becomes yg = θ̂G + eg

and θ̂G is just the unadjusted estimator θ̂G = Ȳ1−Ȳ0. More generally, the adjusted version
can be written θ̂G = Eg[yg] − γ̂′GEg[hg] = θ̂ − γ̂′G(h̄1 − h̄0) with adjustment coefficient
γ̂G = Varg(hg)

−1 Covg(hg, yg). The estimators θ̂G and θ̂PL are numerically identical for
the case of matched pairs, but not for p 6= 1/2. The main result of this section shows
that θ̂G is asymptotically equivalent to the partialled Lin estimator θ̂PL, and both are
asymptotically optimal.

Remark 3.20 (Intuition for Efficiency). The estimator θ̂G uses within-group differences
of covariates h̄g1 − h̄g0 to predict within-group outcome differences Ȳ1g − Ȳ0g. Similar to
the partialled Lin strategy, by doing this we only measure the variation in covariates and
potential outcomes orthogonal to the stratification variables. This forces least squares
to compute a conditional variance-covariance tradeoff, solving the optimal adjustment
problem in Definition 3.5. In particular, the proof of Theorem 3.23 shows that if D1:n ∼
Loc(ψ, p) then the adjustment coefficient

γ̂G = Varg(hg)
−1 Covg(hg, yg)

p→ cp argmin
γ

E[Var(b− γ′h|ψ)].

Remark 3.21. Imbens and Rubin (2015) propose θ̂G in the case of matched pairs p = 1/2.
Their analysis uses a toy sampling model where the pairs themselves are drawn “pre-
matched” from a super-population. By contrast, we model the experimental units as
being sampled from a super-population, with units matched into data-dependent strata
post-sampling. This more realistic model complicates the analysis, producing different
limiting variances and requiring different inference procedures. In a design-based setting,
Fogarty (2018) shows that the Imbens and Rubin (2015) estimator is weakly more efficient
than difference of means for matched pairs designs. By contrast, we extend this estimator
to a larger family of fine stratifications strictly containing matched pairs, and show that
it is asymptotically optimal among linearly adjusted estimators.
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3.4.4 Tyranny-of-the-Minority (ToM) Estimator

Finally, we define tyranny-of-the-minority (ToM) adjustment, extending Lin (2013). To
do so, define the adjustment coefficient

γ̂TM = Varn(ȟi)
−1

(
Covn(ȟi, Yi|Di = 1)

√
1− p
p

+ Covn(ȟi, Yi|Di = 0)

√
p

1− p

)
.

(3.10)
Define the ToM estimator θ̂TM = θ̂ − γ̂′TM(h̄1 − h̄0)cp. The main difference between the
ToM and Partialled Lin adjustment coefficients is that γ̂TM estimates the conditional vari-
ance E[Var(h|ψ)] only once, using the sample variance Varn(ȟi) for the full experimental
sample. By contrast, partialled Lin estimates this term separately in each treatment arm,
using Varn(ȟi|Di = 1) and Varn(ȟi|Di = 0). Because of this, we expect θ̂TM to be more
stable than θ̂PL in small experiments.

Remark 3.22. Lu and Liu (2022) propose an alternate ToM regression adjustment for
stratified experiments. To compare the approaches, for propensity p = a/k define the
within-arm partialling ȟi1 = hi− a−1

∑
i∈gDihi and ȟi0 = hi− (k− a)−1

∑
i∈g(1−Di)hi.

Their estimator takes the form θ̂LL = θ̂− γ̂′LL(h̄1− h̄0). In our notation, their adjustment
coefficient γ̂LL = Ŝ−1

hh ŜhY has

Ŝhh = En

[
Diȟi1ȟ

′
i1

p2

a

a− 1
+

(1−Di)ȟi0ȟ
′
i0

(1− p)2

k − a
k − a− 1

]
and similarly for ŜhY . Their approach is infeasible if a = 1 or a = k − 1. For example,
this prohibits its use in matched pairs and matched triples experiments.

3.4.5 Main Result

The main result of this section shows that all three estimators above are asymptotically
equivalent and efficient in the sense of Definition 3.5.

Theorem 3.23. Suppose Assumptions 3.1 and 3.14 hold. If D1:n ∼ Loc(ψ, p), then
θ̂PL − θ̂G = op(n

−1/2) and θ̂PL − θ̂TM = op(n
−1/2). We have

√
n(θ̂PL −ATE)⇒ N (0, V ∗)

with the optimal variance

V ∗ = Var(c(X)) + min
γ
E[Var(b− γ′h|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

Methods for asymptotically exact inference on the ATE using these estimators are dis-
cussed in Section 4 below. Our simulations and empirical results show that the partialled
Lin, Group OLS, and ToM estimators behave very similarly in finite samples.
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3.5 Further Adjustment for Stratification Variables

In this section, we provide modified versions of the previous estimators that allow fur-
ther adjustment for covariates z(ψ) that are functions of the stratification variables. As
discussed above, this cannot improve first-order efficiency but may improve finite sam-
ple performance by correcting for any remaining imbalances in ψ not controlled by the
stratification.

Denote zi = z(ψi). For each estimator θ̂k above with k ∈ {FE,PL,G, TM}, we
define a modified estimator of the form τ̂k = θ̂k − α̂′k(z̄1 − z̄0)cp. For the fixed effects
estimator, define τ̂FE to be the coefficient on Di in the regression Yi ∼ (1, Di, ȟi, zi).
For the partialled Lin estimator, define τ̂PL to be the coefficient on Di in the regression
Yi ∼ (1, ȟi, zi) + Di(1, ȟi, zi). Define the modified ToM estimator to be as in Equation
3.10, with (ȟi, zi) in place of ȟi. Finally, define the modified group OLS estimator τ̂G =

θ̂G − α̂′G(z̄1 − z̄0)cp, with α̂G = α̂PL. Our next theorem shows that these estimators are
asymptotically equivalent to the original versions of each estimator that do not adjust for
z(ψ). However, the simulations in Sections 5 and 6 show that they may perform better
in small experiments.

Theorem 3.24. Suppose Assumptions 3.1 and 3.14 hold, as well as Var(z) � 0 and
E[|z|22] <∞. Then if D1:n ∼ Loc(ψ, p) we have τ̂k = θ̂k+op(n

−1/2) for k ∈ {FE,PL,G, TM}.
Each estimator has the form τ̂k = θ̂k − α̂′k(z̄1 − z̄0)cp with α̂FE

p→ argminα Var(f − α′z)

for f as in Theorem 3.15 and α̂PL, α̂G, α̂TM
p→ argminα Var(b− α′z).

From the second statement of the theorem, we can interpret the modified estimators as
taking a conservative approach that ignores stratification on ψ and adjusts for imbalances
in z(ψ) as if the experiment were completely randomized.

4 Inference

In this section, we provide asymptotically exact confidence intervals for the ATE in
stratified experiments using generic linearly adjusted estimators. Overcoverage is known
to be a problem for inference based on the usual Eicker-Huber-White (EHW) variance
estimator in stratified experiments. For example, Bai et al. (2021) shows that the EHW
variance estimators for Y ∼ 1 + D + h and the fixed effects regression Y ∼ D + h + zn

are asymptotically conservative for matched pairs designs if h = 0. To the best of
our knowledge, we give the first asymptotically exact inference methods for covariate-
adjusted (h 6= 0) ATE estimation under general stratified designs. Our main inference
result applies to any estimator of the form θ̂ − γ̂′(h̄1 − h̄0)cp + op(n

−1/2). In particular,
this enables asymptotically exact inference on the ATE using any of the estimators in
this paper. Our confidence intervals are shorter than those produced by EHW in the
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simulations and empirical application below, taking full advantage of the efficiency gains
from both stratification and covariate adjustment.

To define our inference methods, consider such an estimator θ̂(γ̂) = θ̂− γ̂′(h̄1 − h̄0)cp

with γ̂
p→ γ. Define the augmented potential outcomes Y a

i (d) = Yi(d) − cpγ̂
′hi for

d ∈ {0, 1} and the augmented outcome Y a
i = Yi − cpγ̂′hi. Then apparently

θ̂(γ̂) = Ȳ1 − Ȳ0 − cpγ̂′(h̄1 − h̄0) = Ȳ a
1 − Ȳ a

0 . (4.1)

Our strategy is to apply the inference results of Cytrynbaum (2023) for difference of means
estimation θ̂ = Ȳ1 − Ȳ0 to the difference of augmented potential outcomes Ȳ a

1 − Ȳ a
0 . To

do so, let Gn denote the set of groups in Definition 2.1. For each g ∈ Gn define the group
centroid ψ̄g = |g|−1

∑
i∈g ψi. Let ν : Gn → Gn be a bijective matching between groups

satisfying ν(g) 6= g, ν2 = Id, and the homogeneity condition

1

n

∑
g∈Gn

|ψ̄g − ψ̄ν(g)|22 = op(1). (4.2)

In practice, ν is obtained by simply matching the group centroids ψ̄g into pairs using the
Derigs (1988) matching algorithm. Let Gνn = {g ∪ ν(g) : g ∈ Gn} be the unions of paired
groups formed by this matching. Define a(g) =

∑
i∈gDi and k(g) = |g|. Finally, define

the variance estimator components

v̂1 = n−1
∑
g∈Gνn

1

a(g)− 1

∑
i 6=j∈g

Y a
i Y

a
j DiDj(1− p)

p2

v̂0 = n−1
∑
g∈Gνn

1

(k − a)(g)− 1

∑
i 6=j∈g

Y a
i Y

a
j (1−Di)(1−Dj)p

(1− p)2

v̂10 = n−1
∑
g∈Gn

k

a(k − a)
(g)
∑
i,j∈g

Y a
i Y

a
j Di(1−Dj).

Next, define the variance estimator

V̂ = Varn

(
(Di − p)Y a

i

p− p2

)
− v̂1 − v̂0 − 2v̂10. (4.3)

Our inference strategy begins with the sample variance of adjusted estimator, which
is consistent for the asymptotic variance of θ̂adj under an iid design, but too large under
stratified designs. We correct this sample variance using the estimators above, which
measure how well the stratification variables predict augmented outcomes in local regions
of the covariate space. This section’s main result shows that V̂ is consistent for the
limiting variance of Theorem 3.4, enabling asymptotically exact inference on the ATE

using adjusted estimators.
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Theorem 4.1 (Inference). Under the conditions of Theorem 3.4, if D1:n ∼ Loc(ψ, p),
then V̂ = V + op(1).

By Theorem 4.1 and our previous asymptotic results in Theorem 3.4, the confidence
interval Ĉ = [θ̂(γ̂) ± V̂ 1/2c1−α/2/

√
n] with cα = Φ−1(α) is asymptotically exact in the

sense that P (ATE ∈ Ĉ) = 1− α + o(1).

5 Simulations

In this section, we use simulations to test the finite sample performance of the estimators
studied above. We consider quadratic outcome models of the form

Yi(d) = ψ′iQdψi + ψ′iLd + cd · u(Xi) + εdi E[εdi |Xi] = 0

for d ∈ {0, 1}. The component ui = u(Xi) represents covariate signal that is independent
of the stratification variables ψ(Xi). After implementing the design D1:n ∼ Loc(ψ, p),
we receive access to scalar covariates hi that are correlated with both ψi and Yi(d). In
particular, suppose that hi = ψ′iQhψi + ψ′iLh + ui with E[ui|ψi] = 0. In the following
simulations, we let ψi ∼ N(0, Im), ui ∼ N(0, 1), and εdi ∼ N(0, 1/10) with (ψi, ui, ε

d
i )

jointly independent. We use treatment proportions p = 2/3 unless otherwise specified.
With m ≡ dim(ψ), let A ∈ Rm×m have Aij = 1 for i 6= j and Aii = 0. We simulate the
following DGP’s:

Model 1: Quadratic coefficients Qh = (1/m2)A and Q0 = Q1 = (1/m)A. Linear
coefficients L0 = 1m, L1 = 21m, Lh = 1m. Regressor signal c1 = c0 = −3.

Model 2: As in Model 1 but c0 = −4 and c1 = −1.

Model 3: As in Model 2 but p = 1/2.

Model 4: As in Model 1 but c0 = 2 and c1 = 4.

Model 5: As in Model 1 but c0 = 2 and c1 = 4 and p = 1/2.

Model 6: As in Model 1 but Qh = (1/100)A.

We begin by comparing the efficiency properties of different linearly adjusted esti-
mators. Unadj refers to simple difference of means (unadjusted). The Lin estimator
is studied in Theorem 3.2. Naive refers to the non-interacted regression Y ∼ (1, D, h),
(Theorem A.4). FE refers to the fixed effects estimator (Theorem 3.15) and Plin the
partialled Lin estimator (Theorem 3.23). GO refers to Group OLS and ToM refers to
Tyranny-of-the-Minority estimation (Theorem 3.23). Strata Controls refer to modified
versions of each of the previous estimators that further adjust for parametric strata con-
trols z(ψ), as discussed in Section 3.5. In our simulations, we set z(ψ) = ψ. Ad refers to
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an adaptive5 estimator that sets θ̂adj = θ̂L if V̂ (γ̂L) ≤ V̂ (γ̂PL) and θ̂adj = θ̂PL otherwise,6

including parametric controls z(ψ) = ψ in both cases.

No Strata Controls Strata Controls z(ψ)

(n, dim(ψ)) Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM Ad

1 100 113 102 48 48 48 48 34 34 33 35 35 35 32
2 100 126 102 63 56 56 56 60 45 51 46 46 46 44

(600, 2) 3 100 116 116 37 37 37 37 46 46 35 35 35 35 35
4 100 26 31 29 26 26 26 25 25 37 32 32 32 25
5 100 28 28 17 17 17 17 20 20 18 18 18 18 18
6 100 101 101 10 10 10 10 7 7 8 8 8 8 7

1 100 114 103 41 42 42 42 34 34 30 32 32 32 31
2 100 126 102 59 52 52 52 60 46 49 44 44 44 42

(1200, 2) 3 100 116 116 35 35 35 35 48 48 34 34 34 34 34
4 100 24 29 27 23 23 23 22 23 34 28 28 28 23
5 100 28 28 17 17 17 17 20 20 17 17 17 17 17
6 100 101 101 8 8 8 8 6 6 7 7 7 7 6

1 100 142 127 84 83 83 83 24 23 41 46 55 46 23
2 100 141 121 94 88 87 88 46 35 58 56 62 56 35

(1200, 5) 3 100 139 139 81 81 81 81 41 41 54 54 56 54 41
4 100 27 31 30 27 26 27 24 19 52 43 47 44 19
5 100 34 34 27 27 27 27 21 21 43 43 46 43 21
6 100 139 139 66 66 66 66 16 16 36 36 40 37 16

Rk 74 65 60 17 15 15 15 5 2 10 8 10 8 0.3

Table 1: Ratio of MSE’s (%), adjusted vs. unadjusted estimation.

Table 1 studies finite sample efficiency. We present the mean squared error (MSE)
ratio, relative to unadjusted estimation, for each of the adjusted estimators above. The
bottom line of the table reports the excess risk Rk of each estimator k relative to the
optimal estimator. To define this, let MSEk,s be the relative MSE of estimator k in
simulation s. Then we set Rk = (1/S)

∑
s(MSEk,s−minj MSEj,s), averaging over all

simulations in the table. All results are calculated using 2000 Monte Carlo repetitions.

In models 1, 2, and 3, both Naive and Lin style linear adjustment are strictly inefficient
relative to unadjusted estimation. These models have marginal covariance Cov(Y (d), h) >

0 but conditional covariance E[Cov(Y (d), h|ψ)] < 0, conditional on the stratification vari-
ables. Because of this, the optimal adjustment coefficient γ∗ < 0, while the Naive and Lin
regressions estimate positive adjustment coefficients γN , γL > 0, leading to even worse per-
formance than unadjusted estimation in some cases. For Models 4 and 5, the Naive and
Lin methods are competitive with the generic efficient methods from Section 3.4. This is
because in these cases we made it so that Cov(Y (d), h) ≈ E[Cov(Y (d), h|ψ)], so that “by

5This estimator is pointwise asymptotically equivalent to θ̂PL. Issues with post model-selection in-
ference (e.g. Leeb and Potscher (2005)) appear to be less worrying here, since even under the fixed
alternative γ∗ 6= γL, the Lin estimator is still

√
n-consistent and asymptotically unbiased.

6We could also use a cross-fit version of V̂ (γ) to reduce bias. However, the in-sample criterion
performed quite well in our simulations.
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chance” γ∗ is close to γN and γL. However, the parametric coefficients γN and γL are esti-
mated more precisely than the semiparametric object γ∗ = E[Var(h|ψ)]−1E[Cov(h, b|ψ)].
For Model 6, Lin with z(ψ) = ψ controls is (approximately) optimal by Theorem 3.9,
since E[w|ψ] is (approximately) linear in ψ.

Summarizing our findings, the Lin, Plin, and Naive estimators with parametric
Strata Controls z(ψ) = ψ had low excess risk across specifications, while the Ad es-
timator was the most efficient overall. The Naive and Lin estimators without strata
controls or within-stratum partialling had large MSE. The Plin, GO, and ToM estima-
tors had similar MSE across model specifications. These generic methods performed the
best in regimes with large n, small dim(ψ), and nonlinear E[h|ψ]. In these cases, the
gap γL−γ∗ between the sub-optimal Lin coefficient and optimal coefficient γ∗ dominates
the additional variability Var(γ̂∗) > Var(γ̂L) required to estimate γ∗ (this variability in-
creases with dim(ψ)). For example, Plin with z(ψ) controls performs the best when
(n, dim(ψ)) = (1200, 2), but Lin with z(ψ) controls is much better when dim(ψ) = 5.
The Ad estimator used a variance pre-test to choose between Plin and Lin (including
z(ψ) controls), allowing it to perform well in both regimes.

No Strata Controls Strata Controls z(ψ)

Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM Ad

1 0 17 11 -5 -5 -5 -5 -49 -50 -34 -29 -26 -29 -50
2 0 18 10 -3 -4 -4 -4 -32 -41 -25 -25 -22 -25 -41

%∆CI Length 3 0 16 16 -6 -6 -6 -6 -36 -36 -24 -24 -24 -24 -36
vs. Unadj 4 0 -46 -43 -42 -46 -46 -46 -50 -55 -22 -31 -26 -30 -55

5 0 -44 -44 -49 -49 -49 -49 -56 -56 -34 -34 -31 -34 -56
6 0 16 16 -12 -12 -12 -12 -59 -59 -35 -35 -35 -35 -59

1 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95
2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95

Coverage 3 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96
(Exact) 4 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.96

5 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.95
6 0.95 0.95 0.95 0.97 0.97 0.95 0.95 0.97 0.97

1 0.98 0.95 0.95 0.96 0.99 0.99 0.98 0.99 0.97
2 0.99 0.96 0.95 0.94 0.99 0.97 0.91 0.98 0.95

Coverage 3 1.00 0.97 0.95 0.97 1.00 0.99 0.93 0.99 0.97
(EHW) 4 0.99 0.98 0.90 0.98 1.00 0.97 0.71 0.98 0.97

5 0.99 0.97 0.91 0.97 1.00 0.96 0.64 0.99 0.98
6 0.99 0.97 0.96 0.96 1.00 0.99 0.96 1.00 0.99

Table 2: Properties of Inference

Table 2 reports finite sample efficiency and coverage properties of the asymptotically
exact inference methods developed in Section 4. We let n = 1200 and dim(ψ) = 5. The
first panel shows % change in confidence interval length relative to unadjusted estimation.
All confidence intervals are computed using the method in Theorem 4.1. We see that
the relative efficiency of different estimators are reflected by our inference methods. In
particular, asymptotically exact inference allows researchers to report shorter confidence
intervals when a more efficient adjustment method is used. In the second panel, we show
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coverage probabilities for our asymptotically exact confidence interval across a range of
linearly adjusted estimators. The final panel shows coverage probabilities for confidence
intervals based on the usual HC2 variance estimator, where applicable. The HC2-based
confidence intervals significantly overcover.

6 Empirical Application

In this section we apply our methods to the experiment in Baysan (2022), who estimates
the effect of a political information campaign on support for a 2017 Turkish referendum
removing checks and balances on executive power. The campaign was administered by
the opposition Republican People’s Party (CHP), who opposed the referendum. Ran-
domization was performed at the neighborhood level, stratified on quartiles of CHP vote
share in the previous 2015 elections. The main outcome is the “No” vote share in the 2017
referendum.7 Due to the cost of administering the campaign, p = 2/11 out of n = 550

total neighborhoods were treated. In the original analysis, Baysan (2022) performed non-
interacted covariate adjustment (Theorem A.4) for h(X) = number of registered voters,
number of valid votes, number of votes for the CHP in 2015, CHP vote share in 2015,
voter turnout, and CHP vote share quartile fixed effects.

No Strata Controls Strata Controls

Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM

θ̂adj -0.0054 0.0040 0.0047 0.0041 0.0021 0.0034 0.0021 0.0041 0.0040 0.0038 0.0037 0.0032 0.0019
SE 0.0088 0.0074 0.0074 0.0074 0.0078 0.0077 0.0081 0.0074 0.0073 0.0077 0.0076 0.0079 0.0083
HC2 0.0155 0.0075 0.0073 0.0075 0.0148 0.0075 0.0070 0.0736 0.0071

Table 3: Empirical Results

In the first block of Table 3, we replicate the neighborhood-level analysis of Baysan
(2022). θ̂adj is the point estimate from each adjustment strategy, SE is the asymptoti-
cally exact standard error from Section 4, and EHW is the usual robust standard error
(HC2). Estimates in the “strata controls z(ψ)” section include quartile fixed effects, while
the leftmost section does not. The results in Section 3.3 show that Lin adjustment with
quartile fixed effects is efficient in this case, and indeed this has the smallest estimated
standard error. The generic efficient estimators have slightly larger SE. The asymptoti-
cally exact standard errors from Section 4 are generally similar to or smaller than EHW,
except for the Lin, FE, and Plin estimators with z(ψ) controls. However, our simulation
also showed that EHW standard errors may severely undercover in these cases.8

Overall, changing the adjustment method did not have an economically meaningful
7Baysan (2022) estimates effects of the campaign on vote share at both the ballot box and neighbor-

hood level. We focus on the neighborhood level effects.
8We also note that Bai et al. (2023b) have found the EHW standard error from a linear regression

with block fixed effects to be potentially invalid in a related problem.
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No Strata Controls Strata Controls

Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM

Est -0.0001 -0.0002 0.0000 -0.0002 -0.0001 0.0000 -0.0002 -0.0002 0.0001 -0.0002 0.0000 0.0000 -0.0002
Coarse SE 0.0085 0.0076 0.0075 0.0075 0.0077 0.0077 0.0078 0.0076 0.0074 0.0078 0.0076 0.0079 0.0079

HC2 0.0144 0.0078 0.0078 0.0077 0.0141 0.0078 0.0077 0.0736 0.0080

Est -0.0001 0.0000 0.0001 0.0000 0.0001 0.0004 0.0000 0.0000 0.0003 0.0000 0.0003 0.0004 0.0000
Fine SE 0.0077 0.0081 0.0080 0.0076 0.0077 0.0077 0.0077 0.0075 0.0074 0.0075 0.0074 0.0076 0.0076

HC2 0.0144 0.0141 0.0141 0.0077 0.0144 0.0078 0.0078 0.0733 0.0078

Est 0.0000 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002
Fine SE 0.0072 0.0073 0.0073 0.0070 0.0070 0.0070 0.0070 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066

p = 1/2 HC2 0.0113 0.0111 0.0111 0.0059 0.0114 0.0060 0.0060 0.0565 0.0061

Est 0.0001 0.0002 0.0003 0.0002 0.0003 0.0000 0.0003 0.0001 0.0002 0.0000 0.0001 -0.0001 0.0001
Fine SE 0.0158 0.0157 0.0158 0.0157 0.0158 0.0158 0.0158 0.0148 0.0148 0.0148 0.0148 0.0149 0.0148

dim(ψ) = 3 HC2 0.0144 0.0145 0.0145 0.0089 0.0145 0.0078 0.0078 0.0740 0.0078

Table 4: Simulated Designs

effect on the conclusions of the study, and we recover the null effect of Baysan (2022) in all
cases. The covariate hk = “CHP vote share in 2015” is highly predictive of Y = “CHP vote
share in 2017,” so adjusting for this variable ex-post provides a modest variance reduction
even after stratifying on 2015 vote share quartiles. However, the estimated optimal
coefficient γ∗k ≈ 0.27 and Lin coefficient γL,k ≈ 0.31 are quite similar, so (inefficient) Lin
adjustment still performs quite well. The other covariates such as hj = “voter turnout”
are very weak predictors of outcomes, so changing the adjustment coefficient on these
variables doesn’t matter much.

Next, we ask how each estimator would have performed in the experiment in Baysan
(2022) under counterfactual randomization procedures, such as fine stratification.9 To
do so, we follow the nonparametric imputation strategy in Bai (2022), defining potential
outcomes Ŷi(d) = Yi if Di = d and matching imputation Ŷi(d) = Yj(i)(d) with j(i) =

argminj:Dj=d |Xi −Xj|2 if Di 6= d. We let the matching variables Xi include all controls
used in the analysis of Baysan (2022). Given the imputed data (Xi, Ŷi(0), Ŷi(1))ni=1, we do
the following simulation exercise: (1) draw treatment assignments D1:n ∼ Loc(ψ, p), (2)
reveal outcomes Ŷi = Ŷi(Di) and (3) form each estimator θ̂adj. We report average point
estimates and standard errors over N = 2000 Monte Carlo repetitions of this procedure.

The first block of Table 4 uses this imputation procedure to reproduce the empirical
results in Table 3, stratifying by quartiles of CHP vote share and adjusting for exactly
the same covariates. The standard errors are very similar to those in the empirical anal-
ysis, which provides some validation for this imputation exercise. In the second block of
Table 4, we simulate a design with fine stratification on 2015 CHP vote share, rather than
just stratifying by quartiles of the vote share as in Baysan (2022). We used a matched
11-tuples design, letting D1:n ∼ Loc(ψ, p) for p = 2/11 and ψ = (2015 CHP vote share).
Covariates h(X) are as above, with z(ψ) = ψ. In the third block, we simulate a matched
pairs design D1:n ∼ Loc(ψ, 1/2). Note that p = 1/2 was infeasible in the original experi-

9Algorithms and inference methods for fine stratification with p 6= 1/2 have only been developed
recently, e.g. Bai (2022) and Cytrynbaum (2023).
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ment due to the high cost of treatment. The last block uses the design D1:n ∼ Loc(ψalt, p)

for ψalt = (CHP vote share,Num. of registered voters,Num. of valid votes), p = 2/11,
and covariates h = Turnout.

We make some brief observations about this simulation exercise. First, note that the
Naive and Lin adjustment are strictly less efficient than unadjusted estimation under
simulated fine stratification, consistent with Theorems 3.2 and Section A.4. Lin and
partialled Lin with z(ψ) controls are the most efficient. Adjustment for extra covariates
h doesn’t significantly improve efficiency relative to the baseline efficiency gain from finely
stratifying on ψ and adjusting for z(ψ) ex-post. Using a matched pairs design p = 1/2

improves efficiency, though the improvement is small considering that this design would
require providing the information campaign to 175 extra neighborhoods. Finally, fine
stratification on ψalt significantly reduces efficiency. This is because the extra covariates
are not very predictive of outcomes, but stratifying on these covariates force us to use
worse matches on the important covariate ψ = (2015 CHP vote share).

7 Discussion and Recommendations for Practice

Stratified randomization and covariate adjustment are both commonly used in the design
and analysis of experiments. In general, experimenters should stratify on a few variables
ψ(X) expected to be most predictive of outcomes at design-time, and plan to adjust
for imbalances in the remaining covariates h(X) ex-post, as discussed in Section 3.2.
Our analysis showed that under stratified randomization, the usual regression adjusted
estimators can be inefficient. Motivated by this, we provide feasible alternatives that
are asymptotically optimal in the class of linearly adjusted estimators. We conclude by
giving some recommendations for empirical practice based on the theory, simulations,
and empirical results above.

We recommend that applied researchers use either (1) the Lin estimator with para-
metric strata controls z(ψ) (e.g. z(ψ) = ψ) or (2) the partialled Lin estimator with
parametric controls z(ψ), since these estimators performed the best across our simula-
tions and empirical application. Lin with parametric controls z(ψ) is efficient under a
rich covariates condition (Section 3.3), while partialled Lin is generically efficient (Section
3.5). Both estimators are robust to treatment effect heterogeneity, while the strata fixed
effects estimator (Theorem 3.15) is not unless p = 1/2.

In our simulations, partialled Lin had good finite sample performance in regimes
where n was large relative to dim(ψ), especially when E[h|ψ] was very nonlinear. Lin
with z(ψ) = ψ controls performed better when dim(ψ) was large relative to n, or if
E[h|ψ] was approximately linear. To decide which regime we are in, we suggest model
selection using a variance pre-test, choosing Lin if V̂ (γ̂L) ≤ V̂ (γ̂PL) and partialled Lin
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otherwise. This adaptive estimator (Ad in Section 6) was efficient in both regimes and
had good coverage properties. We leave a more general study of such post model-selection
estimators in this context to future work.

Regardless of the adjustment strategy, we recommend using the asymptotically exact
confidence intervals provided in Section 4. Our simulations showed close to nominal
coverage for these confidence intervals across all considered estimators. By contrast,
confidence intervals based on the HC2 robust variance estimator often had significant
overcoverage.
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Online Appendix to “Covariate Adjustment in Stratified
Experiments”

Max Cytrynbaum

A Appendix

A.1 Experiments with Noncompliance

In this section, we extend our main results to the case of experiments with imperfect
compliance. The theorems in this section are simple corollaries of our main results. For
completeness, full proofs are provided in Section A.9.

Previously, Ansel et al. (2018) studied covariate adjustment in experiments with non-
compliance and iid or coarsely stratified treatment assignment. Bai et al. (2023a) study
matched pairs experiments with noncompliance. See also Jiang et al. (2023) and Ren
(2023) for nonlinear adjustment in coarsely stratified experiments and completely ran-
domized experiments with noncompliance, respectively.

Let z ∈ {0, 1} denote a binary instrument. Let D(z) be the potential treatments
and Y (d, z) = Y (d) the potential outcomes, satisfying exclusion. Define the intention-to-
treat (ITT) potential outcomes Wi(z) = Yi(Di(z)), so that Yi = ZiWi(1) + (1−Zi)Wi(0)

and Di = ZiDi(1) + (1 − Zi)Di(0). Impose monotonicity D(1) ≥ D(0) and positive
compliance τD = P (D(1) > D(0)) > 0. Define the ITT effect τW = E[W (1) −W (0)].
Under these assumptions, the parameter τL ≡ τW/τD = E[Y (1) − Y (0)|D(1) > D(0)] is
the local average treatment effect (LATE) (Imbens and Angrist (1994)). To estimate τL,
we consider adjusted Wald estimators of the form

τ̂adj =
W̄1 − W̄0 − γ̂′W (h̄1 − h̄0)cp
D̄1 − D̄0 − γ̂′D(h̄1 − h̄0)cp

(A.1)

To analyze τ̂adj, we require that Assumption 3.1 holds for both potential outcomes W (z)

andD(z) and covariates h(X), and also impose Assumption 3.14. Suppose the adjustment
coefficients (γ̂W , γ̂D) = (γW , γD)+op(1). Our first result is a consequence of Theorem 3.4.
To state the result, we define the modified potential outcomes Q(z) = W (z)− τLD(z) for
z ∈ {0, 1} and modified adjustment coefficient γQ = γW − τLγD.

Theorem A.1. If Z1:n ∼ Loc(ψ, p) then
√
n(τ̂adj − τL)⇒ N (0, V (γQ)/τ 2

D) with

V (γQ) = Var(cQ) + E
[

Var(bQ − γ′Qh|ψ)
]

+ E

[
σ2

1Q(X)

p
+
σ2

0Q(X)

1− p

]
.

The terms cQ(X) = E[Q(1) − Q(0)|X], similarly for bQ and σ2
zQ, substituting the
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potential outcomes Q(z) for Y (d) in each formula.

Optimal Adjustment. Let γ̂Q = γ̂W−τLγ̂D and define the adjustment scheme τ̂adj to
be efficient if γ̂Q

p→ γ∗Q ∈ argminγ V (γ). We construct efficient adjusted Wald estimators
using the generic efficient estimators of Section 3.4. Let θ̂Wk and θ̂Dk for k ∈ {PL,GO, TM}
be any of the generic efficient estimators of Section, plugging in outcomesW or D in place
of Y . For example, θ̂WPL is the coefficient on Zi in the regression Wi ∼ (1, ȟi) + Zi(1, ȟi)

and θ̂DPL the coefficient on Zi in Di ∼ (1, ȟi) + Zi(1, ȟi). Define the LATE estimators
τ̂ kL = θ̂Wk /θ̂

D
k for k ∈ {PL,GO, TM}. Our next theorem is a consequence of the efficiency

results in Section 3.4.

Theorem A.2. Suppose Z1:n ∼ Loc(ψ, p). For each k ∈ {PL,GO, TM}, the estimator
τ̂ kL is efficient with

√
n(τ̂ kL − τL)⇒ N (0, V ∗) for V ∗ = minγ V (γ).

Finally, we provide asymptotically exact inference on τL using the adjusted estimators
τ̂ kL above. Define the augmented outcomes Qa

i = Wi − τ̂ kLDi − h′i(γ̂W − τ̂ kLγ̂D). Let v̂q1, v̂
q
0,

and v̂q10 be the variance estimators in Equation 4.3, plugging in Qa
i in place of Y a

i . Define
the variance estimator

V̂ =
1

(θ̂Dk )2

[
Varn

(
(Di − p)Qa

i

p− p2

)
− v̂q1 − v̂

q
0 − 2v̂q10

]
(A.2)

Theorem A.3. Suppose Z1:n ∼ Loc(ψ, p). Then V̂ = V ∗ + op(1).

Theorems A.1 and A.3 show that the confidence interval Ĉ = [τ̂ kL ± V̂ 1/2c1−α/2/
√
n]

with cα = Φ−1(α) is asymptotically exact in the sense that P (τL ∈ Ĉ) = 1− α + o(1).

A.2 Varying Propensities

In this section, we extend our results to fine stratification with varying propensities p(ψ).
To that end, let p(ψ) ∈ {al/kl : l ∈ L} with |L| < ∞ a finite index set. Cytrynbaum
(2023) extends Definition 2.1 to non-constant p(ψ) by the following double stratification
procedure:

(1) Partition the units {1, . . . , n} into propensity strata Sl ≡ {i : p(Xi) = al/kl}.

(2) In each propensity stratum Sl, draw samples (Di)i∈Sl ∼ Loc(ψ, al/kl).

To implement this, we run the algorithm of Cytrynbaum (2023) to match units into
groups of kl separately in each propensity stratum Sl, drawing treatment assignments
(Di)i∈g ∼ CR(al/kl) independently for each g ∈ Gl. Define θ̂adj(γ) to be the AIPW
estimator of Section 3.2, with linear models fd(Xi) = γ′dh(Xi) for d ∈ {0, 1}, so that

θ̂adj(γ) = (γ1 − γ0)′En[hi] + En

[
Di(Yi − γ′1hi)

p(ψi)

]
− En

[
(1−Di)(Yi − γ′0hi)

1− p(ψi)

]
.
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Define γ = (γ0, γ1) and weighted covariates hpi =
(
hi
√

pi
1−pi , hi

√
1−pi
pi

)
. Under assumption

3.1, Theorem 3.4 may be extended to show that if γ̂ p→ γ and D1:n ∼ Loc(ψ, p(ψ)) then
√
n(θ̂adj(γ̂)− ATE)⇒ N (0, V (γ)) with variance

V (γ) = Var(c(X)) + E
[
Var

(
b− γ′hp

∣∣ψ)]+ E

[
σ2

1(X)

p(ψ)
+

σ2
0(X)

1− p(ψ)

]
.

The optimal adjustment coefficient is γ∗ = E[Var(hpi |ψi)]−1E[Cov(hpi , bi|ψi)] if the condi-
tion E[Var(hpi |ψi)] � 0 is satisfied. Let ki denote the size of the group that unit i belongs
to. Extending the work in Section 3.4, the estimator

γ̂ = En

[
ȟpi (ȟ

p
i )
′ ki
ki − 1

]−1

En

[
ȟpiY

TM
i

ki
ki − 1

]

with weighted outcomes Y TM
i = DiYi(1 − pi)

1/2p
−3/2
i + (1 − Di)Yip

1/2
i (1 − pi)

−3/2 has
γ̂ = γ∗ + op(1). Then the estimator θ̂adj(γ̂) is efficient in the sense of achieving the
minimal variance minγ V (γ).

A.3 Non-Interacted Regression Adjustment

For completeness, before continuing we describe the asymptotic behavior of the commonly
used non-interacted regression estimator under stratified designs. Let θ̂N be the coefficient
on Di in Y ∼ 1 +D + h.

Theorem A.4. Suppose Assumptions 3.1 and 3.14 hold. The estimator has representa-
tion θ̂N = θ̂− γ̂′N(h̄1− h̄0)+Op(n

−1). If D1:n ∼ Loc(ψ, p) then
√
n(θ̂N−ATE)⇒ N (0, V )

with variance

V = Var(c(X)) + E[Var(b− γ′Nh|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

The coefficient γN = argminγ∈Rdh Var(f − γ′h) for target function

f(x) = m1(x)

√
p

1− p
+m0(x)

√
1− p
p

with f(x) 6= b(x) in general. The fixed effects estimator is efficient if either p = 1/2 or
Cov(h, Y (1)− Y (0)) = 0.

Theorem A.4 shows that θ̂N is generally inefficient since it uses the wrong objective
function. In particular, the target function f(x) 6= b(x) unless p = 1/2. Also, the limiting
coefficient γN minimizes marginal instead of conditional variance. The results in Section
4 show how to construct asymptotically exact confidence intervals for the ATE using θ̂N .
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A.4 Nonlinear Adjustment

Alternately, we may consider general nonlinear covariate adjustment strategies. Let ĥ(x)

be a function estimated in some class H and consider the adjusted estimator

θ̂adj(ĥ) = En

[
(Yi − ĥ(Xi))(Di − pi)

pi − p2
i

]
.

For example, the usual AIPW estimator in Section 3.2 can be shown to take this form.
Linear adjustment corresponds to the parametric family H = {h(x)′γ : γ ∈ Rdh}. Sim-
ilar to Bai et al. (2024), suppose that for some function h(X) ∈ L2 the equicontinuity
condition holds

√
nEn

[
(ĥ− h)(Xi)(Di − pi)

pi − p2
i

]
= op(1).

Theorem 3.4 can be extended to show that if D1:n ∼ Loc(ψ, p(ψ)) then
√
n(θ̂adj(ĥ) −

ATE)⇒ N (0, V (h)) with asymptotic variance

V (h) = Var(c(X)) + E
[
Var

(
b− h/cp(ψ)

∣∣ψ)]+ E

[
σ2

1(X)

p(ψ)
+

σ2
0(X)

1− p(ψ)

]
for cp(ψ) =

√
p(ψ)− p(ψ)2. One natural extension of the current work would be to

solve a general version of the optimal adjustment problem over a nonlinear or general
nonparametric function class H.

min
h∈H

E
[
Var

(
b− h/cp(ψ)

∣∣ψ)] (A.3)

This requires new technical tools, the development of which we leave to future work.

A.5 Proofs for Section 3.1

Proof of Theorem 3.4. First, note that since E[|h|22] < ∞ we may apply Lemma A.2 of
Cytrynbaum (2023) to show that

γ̂′(h̄1 − h̄0)cp = γ̂′En

[
(Di − p)√
p− p2

hi

]
= γ′En

[
(Di − p)√
p− p2

hi

]
+ (γ̂ − γ)′En

[
(Di − p)√
p− p2

hi

]

= γ′En

[
(Di − p)√
p− p2

hi

]
+ op(n

−1/2) = γ′(h̄1 − h̄0)cp + op(n
−1/2).

Define auxiliary potential outcomes Z(d) = Y (d) − cpγ
′h(X) for d ∈ {0, 1} with

Zi = Z(Di). Summarizing, we have shown that θ̂adj = Z̄1 − Z̄0 + op(n
−1/2). Observe

that E[Z(d)2] . E[Y (d)2] + c2
p|γ|22E[|h(X)|22] < ∞. Then we may apply the general

version of Theorem 3.11 in Cytrynbaum (2023) (Equation 3.6). Setting q = 1 and
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ψ1 = ψ2 and applying the theorem to the auxiliary potential outcomes Z(d), we have
√
n(θ̂adj − ATE)⇒ N (0, V )

V = Var(cZ(X)) + E[Var(bZ(X; p)|ψ)] + E

[
σ2

1,Z(X)

p
+
σ2

0,Z(X)

1− p

]
.

Calculating, we have cZ(X) = E[Z(1)− Z(0)|X] = c(X) and

bZ(X) = E[Z(1)|X]

(
1− p
p

)1/2

+ E[Z(0)|X]

(
p

1− p

)1/2

= b(X; p)− γ′h(X).

Finally, σ2
d,Z(X) = Var(Z(d)|X) = Var(Y (d)|X) = σ2

d(X). Then the variance V above is

V = Var(c(X)) + E[Var(b− γ′h|ψ)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
as claimed.

Proof of Theorem 3.2. Define Wi = (1, h̃i). First consider the regression Yi ∼ DiWi +

(1 −Di)Wi, with coefficients (γ̂1, γ̂0). By Frisch-Waugh and orthogonality of regressors,
γ̂1 is numerically equivalent to the regression coefficient Yi ∼ DiWi and similarly for γ̂0.
Then consider Yi = DiW

′
i γ̂1 + ei with En[ei(DiWi)] = 0. Then DiYi = DiW

′
i γ̂1 + Diei

and En[Diei(DiWi)] = En[ei(DiWi)] = 0. Then γ̂1 can be identified with the regression
coefficient of Yi ∼ Wi in the set {i : Di = 1}. Let γ̂1 = (ĉ1, α̂1). By the usual OLS formula
ĉ1 = En[Yi|Di = 1] − α̂′1En[h̃i|Di = 1] and α̂1 = Varn(h̃i|Di = 1)−1 Covn(h̃i, Yi|Di = 1).
Similar formulas hold for Di = 0 by symmetry. Next, note that for m = dh + 1 the
original regressors can be written as a linear transformation(

DiWi

Wi

)
=

(
Im 0

Im Im

)(
DiWi

(1−Di)Wi

)
.

Then the OLS coefficients for the original regression Yi ∼ DiWi + Wi are given by the
change of variables formula((

Ik 0

Ik Ik

)′)−1(
γ̂1

γ̂0

)
=

(
Ik −Ik
0 Ik

)(
γ̂1

γ̂0

)
=

(
γ̂1 − γ̂0

γ̂0

)
.
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In particular, the coefficient on Di in the original regression is

θ̂L = ĉ1 − ĉ0 = En[Yi − α̂′1h̃i|Di = 1]− En[Yi − α̂′0h̃i|Di = 0]

= θ̂ − En

[
α̂′1h̃iDi

p

]
+ En

[
α̂′0h̃i(1−Di)

1− p

]

= θ̂ − En
[
α̂′1hi(Di − p)

p

]
− En

[
α̂′0hi(Di − p)

1− p

]
= θ̂ − (α̂1(1− p) + α̂0p)

′En

[
hi(Di − p)
p(1− p)

]
= θ̂ −

(
α̂1

√
1− p
p

+ α̂0

√
p

1− p

)′
(h̄1 − h̄0)cp.

The second equality since En[Di] = p identically. The third equality by expanding Di =

Di − p + p and using En[h̃i] = 0 and En[(Di − p)En[hi]] = 0. The fourth equality is
algebra and collecting terms. The fifth equality since h̄1 − h̄0 = En[hi(Di − p)/p(1− p)]
again using En[Di] = p and cp =

√
p(1− p) by definition.

Next, consider the coefficient α̂1 = Varn(h̃i|Di = 1)−1 Covn(h̃i, Yi|Di = 1). We have
Varn(h̃i|Di = 1) = p−1En[Dih̃ih̃

′
i] − p−2En[Dih̃i]En[Dih̃

′
i]. Let 1 ≤ t, t′ ≤ dh. Then we

may compute En[Dih̃ith̃it′ ] = En[(Di − p)h̃ith̃it′ ] + pEn[h̃ith̃it′ ]. Expanding the first term

En[(Di − p)h̃ith̃it′ ] = En[(Di − p)hithit′ ]− En[hit]En[(Di − p)hit′ ]− En[hit′ ]En[(Di − p)hit]

+ En[hit′ ]En[hit]En[Di − p] = op(1).

The final equality follows since En[(Di − p)hithit′ ] = op(1) by applying Lemma A.2 of
Cytrynbaum (2023), using that E[|hith̃it′|] ≤ E[|hi|22] < ∞, and similarly for the other
terms. By WLLN, we also have En[h̃ith̃it′ ]

p→ Var(h). Then by continuous mapping
Varn(h̃i|Di = 1)−1 = Var(h)−1 + op(1). Similar reasoning shows Covn(h̃i, Yi|Di = 1) =

Cov(hi, Yi(1)) + op(1).

Then we have shown α̂1 = Var(h)−1 Cov(h, Y (1)) + op(1) = Var(h)−1 Cov(h,m1) +

op(1). By symmetry, we also have α̂0 = Var(h)−1 Cov(h,m0) + op(1). Putting this all
together, we have α̂1

√
1−p
p

+ α̂0

√
p

1−p = Var(h)−1 Cov(h, b) + op(1) = γL + op(1). Then

by Theorem 3.4,
√
n(θ̂L − ATE)⇒ N (0, V ) with

V = V (γL) = Var(c(X)) + E

[
Var(b− γ′Lh|ψ)

]
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
as claimed. The claimed representation follows from the change of variables formula
above, since α̂1 = â1 + â0 and α̂0 = â0. This finishes the proof.

Proof of Theorem A.4. We have Yi = ĉ + θ̂NDi + γ̂′Nhi + ei with En[ei(1, Di, hi)] = 0.
By applying Frisch-Waugh twice, we have Ỹi = θ̂N(Di − p) + γ̂′N h̃i + ei and θ̂N =
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En[(Ďi)
2]−1En[ĎiYi] with partialled treatment Ďi = (Di − p) − (En[h̃ih̃

′
i]
−1En[h̃i(Di −

p)])′h̃i. Squaring this expression gives

(Ďi)
2 = (Di − p)2 − 2(Di − p)(En[h̃ih̃

′
i]
−1En[h̃i(Di − p)])′h̃i

+ ((En[h̃ih̃
′
i]
−1En[h̃i(Di − p)])′h̃i)2 ≡ ηi1 + ηi2 + ηi3.

Using En[h̃i(Di− p)] = Op(n
−1/2) by Lemma A.2 of Cytrynbaum (2023) and En[h̃ih̃

′
i]

p→
Var(h) � 0, we see that En[ηi2] = Op(n

−1) and En[ηi3] = Op(n
−1). Then we have

En[(Ďi)
2] = En[(Di − p)2] + Op(n

−1) = p − p2 + Op(n
−1). Then apparently θ̂N = (p −

p2)−1En[ĎiYi] +Op(n
−1). Now note that

En[ĎiYi] = En[(Di − p)Yi]− En[(En[h̃ih̃
′
i]
−1En[h̃i(Di − p)])′h̃iYi]

= En[(Di − p)Yi]− En[(Di − p)h̃i]′(En[h̃ih̃
′
i]
−1En[h̃iYi]).

By using Frisch-Waugh to partial out Di − p from the original regression, we have γ̂N =

En[h̄ih̄
′
i]
−1En[h̄iYi] with h̄i = h̃i − (En[(Di − p)2]−1En[h̃i(Di − p)])(Di − p). Then using

En[h̃i(Di − p)] = Op(n
−1/2) again, we have En[h̄ih̄i

′
] = En[h̃ih̃

′
i] + Op(n

−1). Similarly,
En[h̄iYi] = En[h̃iYi] − θ̂En[h̃i(Di − p)] = En[h̃iYi] + Op(n

−1/2). Then the coefficient
γ̂N = En[h̃ih̃

′
i]
−1En[h̃iYi] +Op(n

−1/2). Then we have shown that

θ̂N = θ̂ − En

[
(Di − p)h̃i√

p− p2

]′
(En[h̃ih̃

′
i]
−1En[h̃iYi])(p− p2)−1/2 +Op(n

−1)

= θ̂ − En

[
(Di − p)hi√

p− p2

]′
γ̂N(p− p2)−1/2 +Op(n

−1)

= θ̂ − (γ̂N/cp)
′(h̄1 − h̄0)cp +Op(n

−1).

The second line uses that En[(Di − p)c] = 0 for any constant. This shows the claimed
representation. We have En[h̃ih̃

′
i] = Var(h) + op(1). Note also that En[h̃iYi(1)Di] =

pCov(h, Y (1)) + op(1) and En[h̃iYi(0)(1 − Di)] = (1 − p) Cov(h, Y (0)) + op(1). Putting
this together, we have shown that

γ̂N/cp = Var(h)−1 Cov

(
h,m1

√
p

1− p
+m0

√
1− p
p

)
+ op(1)

= argmin
γ

Var(f − γ′h) + op(1) = γN + op(1).

Then the first claim follows from Theorem 3.4. For the efficiency claims, (a) if p = 1/2

and ψ = 1, then f = b and γN = argminγ Var(f − γ′h) = argminγ E[Var(b− γ′h|ψ)]. For
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(c), if ψ = 1 and Cov(h,m1 −m0) = 0, then we have

Cov(h, f)− Cov(h, b) = Cov

(
h, (m1 −m0)

2p− 1√
p(1− p)

)
= 0.

By expanding the variance, we have argminγ Var(f − γ′h) = argminγ Var(b− γ′h). If (b)
holds, then m1 −m0 = 0 and the same conclusion follows. This finishes the proof.

Proof of Theorem 3.7. For any γ ∈ Rdh , we have argming∈L2(ψ) E[(Y (d)−g(ψ)−γ′h)2] =

E[Y (d)− γ′h|ψ] by standard arguments. Then the coefficients

γd = argmin
γ∈Rdh

E[(Y (d)− γ′h− E[Y (d)− γ′h|ψ])2] = argmin
γ∈Rdh

E[Var(Y (d)− γ′h|ψ)]

and gd(ψ) = E[Y (d)− γ′dh|ψ]. Define fd(x) = gd(ψ) + γ′dh. Then the AIPW estimator

θ̂AIPW = En[f1(Xi)− f0(Xi)] + En

[
Di(Yi − f1(Xi))

p

]
− En

[
(1−Di)(Yi − f0(Xi))

1− p

]
= θ̂ − En

[
f1(Xi)

(Di − p)
p

]
− En

[
f0(Xi)

(Di − p)
1− p

]
= θ̂ − En

[
(Di − p)

(
f1(Xi)

p
+
f0(Xi)

1− p

)]
= En

[
Di − p
p− p2

(Yi − (1− p)f1(Xi)− pf0(Xi))

]
.

Let F (x) = (1 + p)f1(x) + pf0(x). Then by vanilla CLT we have
√
n(θ̂AIPW − ATE) ⇒

N (0, V ) with V = Var
(
Di−p
p−p2 (Yi − F (Xi))

)
≡ Var(Wi) with Wi = Di−p

p−p2 (Yi − F (Xi)) −
ATE. By fundamental expansion of the IPW estimator from Cytrynbaum (2023)

Wi =
Di − p
p− p2

(Yi − F (Xi))− ATE =

[
Diε

1
i

p
− (1−Di)ε

0
i

1− p

]
+ [c(Xi)− ATE] +

[
Di − p√
p− p2

(
(m1 − f1)

√
1− p
p

+ (m0 − f0)

√
p

1− p

)]
.

By the law of total variance and tower law

Var(W ) = Var(E[W |X]) + E[Var(W |X)]

= Var(E[W |X]) + E[Var(E[W |X,D]|X)] + E[Var(W |X,D)].
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From the expansion above, Var(E[W |X]) = Var(c(X)− ATE) = Var(c(X)). Next

E[W |X,D] = [c(Xi)− ATE] +

[
Di − p√
p− p2

(
(m1 − f1)

√
1− p
p

+ (m0 − f0)

√
p

1− p

)]

E[Var(E[W |X,D]|X)] = E

[(
(m1 − f1)

√
1− p
p

+ (m0 − f0)

√
p

1− p

)2
]

Using the definition of fd(x) gives

E

[(
(m1 − γ′1h− E[m1 − γ′1h|ψ])

√
1− p
p

+ (m0 − γ′0h− E[Y (0)− γ′0h|ψ])

√
p

1− p

)2
]

= E

[
Var

(
(m1 − γ′1h)

√
1− p
p

+ (m0 − γ′0h)

√
p

1− p

∣∣∣∣ψ)]
= E

[
Var

(
b−

(
γ1

√
1− p
p

+ γ0

√
p

1− p

)′
h

∣∣∣∣ψ
)]

= argmin
γ∈Rdh

E[Var(b− γ′h|ψ)].

The final line by characterization of γd above and linearity of Z → argminγ E[Var(Z −
γ′h|ψ)]. Finally note that

Var(W |X,D) = E

[(
Diε

1
i

p
− (1−Di)ε

0
i

1− p

)2 ∣∣∣∣X,D
]

= E

[
Di(ε

1
i )

2

p2
+

(1−Di)(ε
0
i )

2

(1− p)2

∣∣∣∣Xi, Di

]
=
Diσ

2
1(Xi)

p2
+

(1−Di)σ
2
0(Xi)

(1− p)2
.

Then E[Var(W |X,D)] = E
[
σ2
1(Xi)

p
+

σ2
0(Xi)

1−p

]
. Comparing with Equation 3.3 finishes the

proof.

A.6 Proofs for Section 3.3

Proof of Theorem 3.9. By Theorem 3.2, the middle term of the asymptotic variance is
E[Var(b−β′h|ψ)] with β = Var(h)−1 Cov(h, b). This is the OLS coefficient from the pop-
ulation regression b = a+β′h+e = a+α′z+γ′w+e with E[e(1, w, z)] = 0 and h = (w, z).
Denote b̃ = b− E[b] and similarly for w̃, z̃. By Frisch-Waugh we have b̃ = α′z̃ + γ′w̃ + e.
Let w̌ = w̃ − (E[z̃z̃′]−1E[z̃w̃′])′z̃. Then again by Frisch-Waugh the coefficient of interest
is γ = E[w̌w̌′]−1E[w̌b]. Next, we characterize this coefficient.

By assumption, E[w|ψ] = c + Λz. De-meaning both sides gives E[w̃|ψ] = Λz̃. Write
ũ = w̃ − E[w̃|ψ] = w̃ − Λz̃ with E[ũ|ψ] = 0. Then we have

E[z̃w̃′] = E[z̃(w̃ − E[w̃|ψ] + E[w̃|ψ])′] = E[z̃ũ′] + E[z̃z̃′Λ′] = E[z̃z̃′]Λ′.
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Then w̌ = w̃ − (E[z̃z̃′]−1E[z̃z̃′]Λ′)′z̃ = w̃ − Λz̃ = ũ. We have now shown that

γ = E[ũũ′]−1E[ũb] = E[Var(w̃|ψ)]−1E[Cov(w̃, b|ψ)] = E[Var(w|ψ)]−1E[Cov(w, b|ψ)].

In particular, the coefficient β = (α, γ) is optimal

E[Var(b− β′h|ψ)] = E[Var(b− γ′w|ψ)] = min
γ̃
E[Var(b− γ̃′w|ψ)]

= min
α̃,γ̃

E[Var(b− α̃′z − γ̃′w|ψ)] = min
β
E[Var(b− β′h|ψ)].

The second equality since z = z(ψ). This completes the proof.

A.7 Proofs for Section 3.4

Proof of Theorem 3.15. By Frisch-Waugh Y̌i = θ̂FEĎi + γ̂′FEȟi + ei with Ďi = Di −
k−1

∑
j∈g(i) Dj = Di − p and ȟi = hi − k−1

∑
j∈g(i) hj. Applying Frisch-Waugh again, the

estimator is θ̂FE = En[(D̄i)
2]−1En[D̄iYi] with D̄i = (Di − p) − (En[ȟiȟi

′
]−1En[ȟi(Di −

p)])′ȟi. By Lemma A.8 we have En[ȟiȟi
′
]

p→ k−1
k
E[Var(h|ψ)] � 0, so that En[ȟiȟi

′
]−1 =

Op(1). By the definition of stratification, En[(Di − p)1(g(i) = g)] = 0 for all g. Then
defining h̄g ≡ k−1

∑
j∈g hj we may write

En[(Di − p)ȟi] = En

[
(Di − p)

(
hi −

∑
g

1(g(i) = g)h̄g

)]
= En[(Di − p)hi] = Op(n

−1/2).

The final equality since E[|h|22] < ∞ and by Lemma A.2 of Cytrynbaum (2023). Then
apparently En[(D̃i)

2] = En[(Di−p)2]+Op(n
−1) so that En[(D̃i)

2]−1 = (p−p2)−1+Op(n
−1).

Then we have shown that

θ̂FE =
En[(Di − p)Yi]

p− p2
− En[ȟi(Di − p)]′En[ȟiȟi

′
]−1En[ȟiYi]

p− p2
+Op(n

−1)

= θ̂ − (h̄1 − h̄0)′En[ȟiȟi
′
]−1En[ȟiYi] +Op(n

−1).

By Lemma A.8 we have

En[ȟiYi] = En[ȟiDiYi(1)] + En[ȟi(1−Di)Yi(0)]

=
p(k − 1)

k
E[Cov(h, Y (1)|ψ)] +

(1− p)(k − 1)

k
E[Cov(h, Y (0)|ψ)] + op(1)

=
(k − 1)

k
E [Cov (h, p ·m1(X) + (1− p) ·m0(X)|ψ)] + op(1).
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Putting this together, we have c−1
p En[ȟiȟi

′
]−1En[ȟiYi]

p→ E[Var(h|ψ)]−1E[Cov(h, f |ψ)] =

argminγ E[Var(f − γ′h|ψ)]. Similar reasoning shows that γ̂FE = En[ȟiȟi
′
]−1En[ȟiYi] +

Op(n
−1/2). Then we have representation θ̂FE = θ̂− (c−1

p γ̂FE)′(h̄1− h̄0)cp + op(n
−1/2). The

efficiency claims follow identically to the reasoning in Theorem A.4. This finishes the
proof.

Proof of Theorem 3.23 (Part I). Consider the regression Yi ∼ Di(1, ȟi) + (1−Di)(1, ȟi)

with ȟi = hi − k−1
∑

j∈g(i) hj. Denote the OLS coefficients by (ĉ1, α̂1) and (ĉ0, α̂0) re-
spectively. By Frisch-Waugh, the coefficient (ĉ1, α̂1) is given by the equation Yi =

ĉ1 + α̂′1ȟi+ei with En[ei(1, ȟi)|Di = 1] = 0. By the usual OLS formula α̂1 = Varn(ȟi|Di =

1)−1 Covn(ȟi, Yi|Di = 1). Observe that by definition of stratification

Pn(g(i) = g|Di = 1) =
Pn(Di = 1|g(i) = g)Pn(g(i) = g)

Pn(Di = 1)
= Pn(g(i) = g).

This shows that En[En[hi|g(i)]|Di = 1] = En[En[hi|g(i)]] = En[hi], so that En[ȟi|Di =

1] = En[hi|Di = 1]− En[hi] = En[p−1(Di − p)hi] = Op(n
−1/2) as above. Then we have

Varn(ȟi|Di = 1) = En[ȟiȟ
′
i|Di = 1]− En[ȟi|Di = 1]En[ȟi|Di = 1]′

= En[ȟiȟ
′
i|Di = 1] +Op(n

−1).

Similarly, Covn(ȟi, Yi|Di = 1) = En[ȟiYi|Di = 1] +Op(n
−1/2). Then we have

α̂1 = En[ȟiȟ
′
i|Di = 1]−1En[ȟiYi|Di = 1] +Op(n

−1/2)

=
k − 1

k

k

k − 1
E[Var(h|ψ)]−1E[Cov(h, Y (1)|ψ)] + op(1)

by Lemma A.8. Similarly, α̂0 = E[Var(h|ψ)]−1E[Cov(h, Y (0)|ψ)] + op(1). By the usual
OLS formula, the constant term ĉ1 has form ĉ1 = En[Yi|Di = 1] − α̂′1En[ȟi|Di = 1] and
similarly for ĉ0. By change of variables used in the proof of Theorem 3.2, our estimator

θ̃ = ĉ1 − ĉ0 = En[Yi|Di = 1]− En[Yi|Di = 0]−
[
α̂′1En[ȟi|Di = 1]− α̂′0En[ȟi|Di = 0]

]
= θ̂ − En

[
α̂′1hi(Di − p)

p
+
α̂′0hi(Di − p)

1− p

]
= θ̂ −

[
α̂1

√
1− p
p

+ α̂0

√
p

1− p

]′
En

[
hi(Di − p)√

p− p2

]
.
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Define γ̂ = α̂1

√
1−p
p

+ α̂0

√
p

1−p . Then by work above

γ̂ = E[Var(h|ψ)]−1E

[
Cov

(
h,

√
1− p
p

Y (1) +

√
p

1− p
Y (0)|ψ

)]
+ op(1)

= E[Var(h|ψ)]−1E [Cov (h, b|ψ)] + op(1) = argmin
γ

E[Var(b− γ′h|ψ)] + op(1).

Then applying Theorem 3.4 completes the proof. As before, α̂1 = â1 + â0 and α̂0 = â0

by change of variables.

Proof of Theorem 3.23 (Part II). Next, we analyze the group OLS estimator. By Theo-
rem 3.4, it suffices to show that γ̂G = Varg(hg)

−1 Covg(hg, yg) = cp·E[Var(h|ψ)]−1E[Cov(h, b|ψ)]+

op(1). For the first term, note that Eg[hg] = Op(n
−1/2) as above, so that Var(hg) =

Eg[hgh
′
g] − Eg[hg]Eg[hg]

′ = Eg[hgh
′
g] + Op(n

−1). Similarly, Covg(hg, yg) = Eg[hgyg] +

Op(n
−1/2). Applying Lemma A.7 to each component of hih′i shows that

Eg[hgh
′
g] =

k

n

∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

h′i(Di − p)
p− p2

)
=
kE[Var(h|ψ)]

a(k − a)
+ op(1).

Using the fundamental expansion of the IPW estimator, we have

Eg[yghg] =
k

n

∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

Yi(Di − p)
p− p2

)

=
k

n

∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

c(Xi) +
bi(Di − p)√

p− p2
+
Diε

1
i

p
− (1−Di)ε

0
i

1− p

)
≡ An +Bn + Cn.

First, note that An = Op(n
−1/2) and Cn = Op(n

−1/2) by Lemma A.7. Moreover, we have

Bn =
k

n

∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

bi(Di − p)√
p− p2

)

=
k
√
p− p2

a(k − a)
E[Cov(h, b|ψ)] + op(1) =

E[Cov(h, b|ψ)]√
a(k − a)

+ op(1).

Putting this together, by continuous mapping we have

γ̂G = Varg(hg)
−1 Covg(hg, yg) =

a(k − a)

k

1√
a(k − a)

E[Var(h|ψ)]−1E[Cov(h, b|ψ)] + op(1)

=
√
p− p2E[Var(h|ψ)]−1E[Cov(h, b|ψ)] + op(1).

Applying Theorem 3.4 completes the proof.
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Proof of Theorem 3.23 (Part III). Finally, we analyze the ToM estimator. From the work
in part I of this proof we have

γ̂PL = Varn(ȟi|Di = 1)−1 Covn(ȟi, Yi|Di = 1)

√
1− p
p

+ Varn(ȟi|Di = 0)−1 Covn(ȟi, Yi|Di = 0)

√
p

1− p

Comparing with Equation 3.10, it suffices to show that Varn(ȟi|Di = 1)−1 Varn(ȟi) =

op(1) and Varn(ȟi|Di = 0)−1 Varn(ȟi) = op(1). This follows immediately from Lemma
A.8. Applying Theorem 3.4 completes the proof.

Proof of Theorem 3.24. First, consider the fixed effects estimator with

Yi = ĉ+ τ̂FEDi + γ̂′FEȟi + γ̂′zzi + ei,1.

Note that D̃i = Di−p and ȟi−En[ȟi] = ȟi− (En[hi]−En[En[hi|gi = g]) = ȟi. By Frisch-
Waugh, we may instead study Yi = τ̂FE(Di − p) + γ̂′FEȟi + γ̂′z z̃i + ei,2. Let w̌i = (ȟi, z̃i)

and wi = (hi, zi). Then by work in Theorem 3.15, τ̂FE = En[(D̄i)
2]−1En[D̄iYi] with

D̄i = (Di − p)− (En[w̌iw̌
′
i]
−1En[w̌i(Di − p)])′w̌i.

Previous work suffices to show that En[w̌i(Di − p)] = Op(n
−1/2). Then as before,

En[(D̄i)
2]−1 = (p− p2)−1 +Op(n

−1). Then we have

τ̂FE = θ̂ − (p− p2)−1(En[w̌iw̌
′
i]
−1En[w̌i(Di − p)])′En[w̌iYi]

= θ̂ − (w̄1 − w̄0)′En[w̌iw̌
′
i]
−1En[w̌iYi].

The second equality uses En[ȟi(Di−p)] = En[hi(Di−p)] and En[z̃i(Di−p)] = En[zi(Di−
p)] as noted before. This shows the claim about estimator representation.

Next, consider γ̂FE. Define gi = (Di−p, z̃i). Let h̄i = ȟi−(En[gig
′
i]
−1En[giȟi])

′gi. Then
by Frisch-Waugh γ̂FE = En[h̄ih̄i

′
]−1En[h̄iYi]. Consider En[z̃iȟi] = En[ziȟi] since En[ȟi] =

0. We have En[ziȟi] = op(1) by Lemma A.8. Then by previous work En[giȟi] = op(1).
Then En[h̄ih̄i

′
] = En[ȟiȟ

′
i] + op(1). Similarly, En[h̄iYi] = En[ȟiYi] + op(1). Then by con-

tinuous mapping γ̂FE = En[h̄ih̄i
′
]−1En[h̄iYi] = En[ȟiȟ

′
i]
−1En[ȟiYi] + op(1), the coefficient

from the regression without strata variables zi included shown in Theorem 3.15. Consider
the coefficient γ̂z on z(ψ). Let qi = (Di − p, ȟi) and z̄i = z̃i − (En[qiq

′
i]
−1En[qiz̃i])

′qi. We
just showed that En[qiz̃i] = op(1). Then by similar reasoning as above and Frisch-Waugh

γ̂z = En[z̄iz̄i
′]−1En[z̄iYi] = En[z̃iz̃

′
i]
−1En[z̃iYi] + op(1)

= Var(z)−1 Cov(z, pm1 + (1− p)m0) + op(1) = cp Var(z)−1 Cov(z, f) + op(1).
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Our work so far also shows that En[w̌iw̌
′
i]

p→ Diag(En[ȟiȟ
′
i], En[z̃iz̃

′
i]). Then it’s easy to

see from our expression for τ̂FE that we may identify γ̂z = α̂1 + op(1). This finishes the
proof for τ̂FE. The proofs for the modified partialled Lin estimator τ̂PL and modified
ToM estimators are similar and omitted for brevity.

A.8 Proofs for Section 4

Proof of Theorem 4.1. Define population augmented potential outcomes Y b(d) = Y (d)−
cpγ
′h(X) for d ∈ {0, 1} with outcomes Y b

i = Y b
i (Di) = Yi− cpγ′hi. The proof of Theorem

3.4 showed that θ̂adj = Ȳ b
1 − Ȳ b

0 + op(n
−1/2). Define v̂b1, v̂b0, and v̂b10 to be the analogues of

v̂1, v̂0, and v̂10 substituting Y b
i for Y a

i . By applying Theorem 6.1 of Cytrynbaum (2023)
to θ̂b ≡ Ȳ b

1 − Ȳ b
0 , we have V̂b = V + op(1) for variance estimator

V̂b = Varn

(
(Di − p)Y b

i

p− p2

)
− v̂b1 − v̂b0 − 2v̂b10.

Then it suffices to show the following claim: V̂ − V̂b = op(1). We prove a slight generaliza-
tion, letting hi(d) possibly have a potential outcomes structure and setting hi = hi(Di).
The case with hi(1) = hi(0) = hi is a special case.

We work term by term. Define the weights Li = (Di − p)/(p − p2). Then we have
Varn(LiY

b
i )−Varn(LiY

a
i ) = En[L2

i (Y
b
i )2]−En[LiY

b
i ]2−En[L2

i (Y
a
i )2]+En[LiY

a
i ]2. We have

En[LiY
a
i ]2 −En[LiY

b
i ]2 = ATE2−ATE2 +op(1) = op(1) by previous work. Next, we have

|En[L2
i (Y

b
i )2]−En[L2

i (Y
a
i )2]| = |En[L2

i (Y
b
i − Y a

i )(Y b
i + Y a

i )]| . En[(Y b
i − Y a

i )2]1/2En[(Y b
i +

Y a
i )2]1/2. It’s easy to see that En[(Y b

i + Y a
i )2]1/2 = Op(1). We have En[(Y b

i − Y a
i )2] =

c2
pEn[(γ′hi − γ̂′hi)2] = c2

p(γ̂ − γ)′En[hih
′
i](γ̂ − γ) = op(1). This shows that Varn(LiY

b
i ) −

Varn(LiY
a
i ) = op(1), completing the proof for the first term.

Next consider v̂b1 − v̂1. We may expand

v̂b1 − v̂1 = n−1
∑
g∈Gνn

1

a(g)− 1

1− p
p2

∑
i 6=j∈g

DiDj(Y
a
i Y

a
j − Y b

i Y
b
j ).

Note that Y a
i Y

a
j − Y b

i Y
b
j = (Y a

i − Y b
i )Y a

j + Y b
i (Y a

j − Y b
j ) = cp(γ̂− γ)′(hiY

a
j + Y b

i hj). Then
by triangle inequality and Cauchy-Schwarz

|v̂b1 − v̂1| =

∣∣∣∣∣∣cp(γ̂ − γ)′n−1
∑
g∈Gνn

1

a(g)− 1

1− p
p2

∑
i 6=j∈g

DiDj(hiY
a
j + Y b

i hj)

∣∣∣∣∣∣
. |γ̂ − γ|2

n−1
∑
g∈Gνn

∑
i 6=j∈g

|hi|2|Y a
j |+ |Y b

i ||hj|2


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Observe that∑
i 6=j∈g

|hi|2|Y a
j | ≤ (1/2)

∑
i 6=j∈g

|hi|22 + |Y a
j |2 =

k − 1

2

∑
i∈g

|hi|22 + |Y a
i |2

Then since Gνn is a partition of [n] we have |v̂b1 − v̂1| . |γ̂ − γ|2En[|hi|22 + |Y a
i |2] =

op(1)Op(1) = op(1). Then by symmetry v̂b0 − v̂0 = op(1) as well. A similar calcula-
tion shows that v̂b10 − v̂10 = op(1). Then we have shown that V̂b − V̂ = op(1), which
completes the proof.

A.9 Proofs of Noncompliance Theorems

Proof of Theorems A.1, A.2, A.3. First we show Theorem A.1. Define θ̂W (α) = W̄1 −
W̄0 − α′(h̄1 − h̄0)cp and similary for θ̂D(α). We claim that τ̂adj = θ̂W (γW )/θ̂D(γD) +

op(n
−1/2). By algebra, we have

τ̂adj −
θ̂W (γW )

θ̂D(γD)
=
θ̂D(γD)(γ̂W − γW )′(h̄1 − h̄0)cp + θ̂W (γW )(γD − γ̂D)′(h̄1 − h̄0)cp

θ̂D(γD)θ̂D(γ̂D)

By Theorem 3.4, θ̂D(γD), θ̂D(γ̂D) = τD + op(1) with τD > 0, so the denominator is Op(1).
The numerator is op(n−1/2) since θ̂D(γD), θ̂W (γW ) = Op(1) and (γ̂A − γA)′(h̄1 − h̄0)cp =

op(n
−1/2) for A = D,W by the first line of the proof of Theorem 3.4. Next, recall the

potential outcomes Q(z) = W (z)− τLD(z) and define γQ = γW − τLγD. Then we have

θ̂W (γW )

θ̂D(γD)
− τL =

θ̂W (γW )− τLθ̂D(γD)

θ̂D(γD)
=
θ̂Q(γQ)

θ̂D(γD)
.

The ATE-like quantity E[Q(1) − Q(0)] = 0 by definition of τL. Then by Theorem 3.4,
we have

√
nθ̂Q(γQ)⇒ N (0, VQ) with variance

VQ = Var(cQ) + E

[
Var(bQ − h′γQ|ψ)

]
+ E

[
σ2

1Q(X)

p
+
σ2

0Q(X)

1− p

]
. (A.4)

The claim now follows by Slutsky since θ̂D(γD) = E[D(1)−D(0)]+op(1) so that
√
n(τ̂adj−

τL) =
√
nθ̂Q(γQ)/θ̂D(γD) + op(1) =

√
nθ̂Q(γQ)/E[D(1)−D(0)] + op(1).

Next, we prove Theorem A.2. By linearity of the balance function (Equation 2.2), we
have bQ = bW − τLbD. The optimal coefficient is γ∗Q = E[Var(h|ψ)]−1E[Cov(h, bQ|ψ)] =

E[Var(h|ψ)]−1(E[Cov(h, bW |ψ)] − τLE[Cov(h, bD|ψ)]) = γ∗W − τLγ
∗
D. This shows that

τ̂adj is efficient if and only if γW − τLγD = γ∗W − τLγ
∗
D. In particular, this holds if

γW = γ∗W and γD = γ∗D. By the estimator representations in Section 3.4, the estimator
θ̂Wk = W̄1 − W̄0 − γ̂′W,k(h̄1 − h̄0)cp for γ̂W,k = γ∗W + op(1) for k ∈ {PL,GO, TM}, and
similarly for θ̂Dk . Then τ̂ kL is efficient for each k ∈ {PL,GO, TM}.
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Finally, we show Theorem A.3. With γQ = γW − τLγD, define the “population”
augmented potential outcomes Qb(z) = Q(z) − h′γQ and outcomes Qb

i = Qi − h′iγQ.
Let V̂ a

Q denote the bracketed term in Equation 4.1, and let V̂ b
Q denote the bracketed

term with Qa
i replaced by the population version Qb

i . Note that we showed above that
√
n(Q̄b

1 − Q̄b
0) ⇒ N(0, VQ). Then V̂ b

Q = VQ + op(1) by Theorem 4.1. Then it suffices to
show that V̂ b

Q − V̂ a
Q = op(1). To see this, note that we may write Qb

i = Wi − β′Si and
Qa
i = Wi− β̂′Si with β̂ = β+op(1) for β̂ = (τ̂ kL, γ̂Q), β = (τL, γQ) and Si = (Di, hi). Then

the fact that V̂ b
Q− V̂ a

Q = op(1) for outcomes of this form and β̂ = β+op(1) is exactly what
we showed in the main claim in the proof of Theorem 4.1. This finishes the proof.

A.10 Technical Lemmas

Lemma A.5 (Conditional Convergence). Let (Gn)n≥1 and (An)n≥1 a sequence of σ-
algebras and RV’s. Then the following results hold

(i) E[|An||Gn] = op(1)/Op(1) =⇒ An = op(1)/Op(1).

(ii) Var(An|Gn) = op(c
2
n)/Op(c

2
n) =⇒ An − E[An|Gn] = op(cn)/Op(cn) for any positive

sequence (cn)n.

(iii) If (An)n≥1 has An ≤ Ā <∞ Gn-a.s. ∀n and An = op(1) =⇒ E[|An||Gn] = op(1).

See Appendix C of Cytrynbaum (2023) for the proof.

Lemma A.6. Let (ai), (bi), (ci) be positive scalar arrays for i ∈ I for some index set I.
Then we have

∑
i,j,s∈I
i 6=j,j 6=s

aibjcs ≤ 3
∑

i∈I(a
3
i + b3

i + c3
i ).

Proof. Note that by AM-GM inequality and Jensen, for non-negative x, y, z we have
xyz ≤ ((1/3)(x+ y + z))3 ≤ (1/3)(x3 + y3 + z3). Applying this gives

∑
i,j,s

i 6=j,j 6=s

aibjcs ≤

(∑
i

ai

)(∑
j

bj

)(∑
s

cs

)

≤ (1/3)

(∑
i

ai

)3

+

(∑
j

bj

)3

+

(∑
s

cs

)3
 ≤ 3

∑
i

(a3
i + b3

i + c3
i ).

Lemma A.7 (Group OLS). Let h,w : X → R. Denote hi = h(Xi) and wi = w(Xi) and
suppose E[hi|ψi = ψ] and E[wi|ψi = ψ] are Lipschitz continuous. Suppose E[h4

i ] < ∞
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and E[w4
i ] <∞. Let εdi = Yi(d)−md(Xi) for d ∈ {0, 1}. Then we have

An = n−1
∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

wi(Di − p)
p− p2

)
=
E[Cov(h,w|ψ)]

a(k − a)
+ op(1).

Bn = n−1
∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

wi

)
= Op(n

−1/2).

Cn =
∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

Diε
1
i

p
− (1−Di)ε

0
i

1− p

)
= Op(n

−1/2).

Proof. Define h̄g1 = a−1
∑

i∈g hi1(Di = 1), h̄g0 = (k − a)−1
∑

i∈g hi1(Di = 0), and
w̄g = k−1

∑
i∈g wi. Recall that g ∈ σ(ψ1:n, πn) for each g and D1:n ∈ σ(ψ1:n, πn, τ) for

an exogenous variable τ ⊥⊥ (X1:n, Y (0)1:n, Y (1)1:n) used to randomize treatments. Notice
that k−1

∑
i∈g

hi(Di−p)
p−p2 = h̄g1 − h̄g0. First consider Bn. By Lemma C.10 of Cytrynbaum

(2023), we have E[Bn|X1:n, πn] = 0. Next, we have

E[B2
n|X1:n, πn] = E

[
n−2

∑
g,g′

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g′

hi(Di − p)
p− p2

)
w̄gw̄g′

∣∣∣∣X1:n, πn

]

= E

n−2
∑
g

(
k−1

∑
i∈g

hi(Di − p)
p− p2

)2

w̄2
g

∣∣∣∣X1:n, πn

 .
The second equality follows by Lemma C.10 of Cytrynbaum (2023), since Cov(Di, Dj|X1:n, πn) =

0 if i, j are in different groups. We may calculate

E

(k−1
∑
i∈g

hi(Di − p)
p− p2

)2 ∣∣∣∣X1:n, πn

 =
1

k2(p− p2)2

∑
i∈g

h2
i Var(Di|X1:n, πn)

+
1

k2(p− p2)2

∑
i 6=j∈g

hihj Cov(Di, Dj|X1:n, πn) =
1

k2(p− p2)

[∑
i∈g

h2
i − (k − 1)−1

∑
i 6=j∈g

hihj

]
.

Note that
∑

i 6=j∈g |hihj| ≤
(∑

i∈g |hi|
)2

= k2
(
k−1

∑
i∈g |hi|

)2

≤ k
∑

i∈g |hi|2. The final
inequality by Jensen. Then by triangle inequality, a simple calculation gives

1

k2

∣∣∣∣∣∑
i∈g

h2
i − (k − 1)−1

∑
i 6=j∈g

hihj

∣∣∣∣∣ ≤ 1

k2

2k − 1

k − 1

∑
i∈g

h2
i ≤ 3k−2

∑
i∈g

h2
i .
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Then continuing from above

E[B2
n|X1:n, πn] . k−2n−2

∑
g

(∑
i∈g

h2
i

)(∑
i∈g

wi

)2

≤ 1

kn2

∑
g

(∑
i∈g

h2
i

)(∑
i∈g

w2
i

)

≤ 1

2kn2

∑
g

(∑
i∈g

h2
i

)2

+

(∑
i∈g

w2
i

)2
 = (2n)−1En[h4

i + w4
i ] = Op(n

−1).

The second inequality follows from Jensen, and the third by Young’s inequality. The first
equality by Jensen and final equality by our moment assumption. Then by Lemma A.5,
Bn = Op(n

−1/2).
Next, consider An. Using the within-group covariances above, we compute

E[An|X1:n, πn] =
1

nk2(p− p2)2

∑
g

∑
i,j∈g

Cov(Di, Dj|X1:n, πn)hiwj

=
1

nk2(p− p2)2

∑
g

(∑
i∈g

(p− p2)hiwi −
∑
i 6=j∈g

a(k − a)

k2(k − 1)
hiwj

)

=
1

k2(p− p2)

(
En[hiwi]−

1

n(k − 1)

∑
g

∑
i 6=j∈g

hiwj

)
.

Define ui = wi − E[wi|ψi] and vi = hi − E[hi|ψi]. Consider the second term. We have

n−1
∑
g

∑
i 6=j∈g

hiwj = n−1
∑
g

∑
i 6=j∈g

(E[hi|ψi] + vi)(E[wj|ψj] + uj) ≡
4∑
l=1

An,l.

First, note that for any scalars aibj + ajbi = aibi + ajbj + (ai− aj)(bj − bi). Then we have

An,1 ≡ n−1
∑
g

∑
i 6=j∈g

E[hi|ψi]E[wj|ψj] = n−1
∑
g

∑
i<j∈g

E[hi|ψi]E[wj|ψj] + E[hj|ψj]E[wi|ψi]

= n−1
∑
g

∑
i<j∈g

E[hi|ψi]E[wi|ψi] + E[hj|ψj]E[wj|ψj]

+ n−1
∑
g

∑
i<j∈g

(E[hi|ψi]− E[hj|ψj])(E[wj|ψj]− E[wi|ψi]) ≡ Bn,1 + Cn,1.

By counting ordered tuples (i, j), it’s easy to see that

Bn,1 = n−1
∑
g

∑
i∈g

(k − 1)E[hi|ψi]E[wi|ψi] = (k − 1)En[E[hi|ψi]E[wi|ψi]]

= (k − 1)E[E[hi|ψi]E[wi|ψi]] + op(1) = (k − 1)(E[hiwi]− E[viui]) + op(1).

For the second term, by our Lipschitz assumptions we have |Cn,1| . n−1
∑

g

∑
i<j∈g |ψi−
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ψj|22 = op(1). Next, claim that An,l = op(1) for l = 2, 3, 4. For instance, we have

E[An,2|ψ1:n, πn] = n−1
∑
g

∑
i 6=j∈g

E [E[hi|ψi]uj|ψ1:n, πn] = 0.

Since E[uj|ψ1:n, πn] = E[uj|ψj] = 0 by Lemma 9.21 of Cytrynbaum (2022). Moreover,
we have

E[A2
n,2|ψ1:n, πn] = n−2

∑
g,g′

∑
i 6=j∈g

∑
s6=t∈g′

E[hi|ψi]E[hs|ψs]E[ujut|ψ1:n, πn].

For j 6= t, we have E[ujut|ψ1:n, πn] = E[uj|ψj]E[ut|ψt] = 0 by Lemma 9.21 of the paper
above. Since the groups g are disjoint, and using E[u2

j |ψ1:n, πn] = E[u2
j |ψj]

E[A2
n,2|ψ1:n, πn] = n−2

∑
g

∑
i,j,s∈g
i 6=j,j 6=s

E[hi|ψi]E[hs|ψs]E[u2
j |ψj]

≤ 3n−2
∑
g

∑
i∈g

2E[hi|ψi]3 + E[u2
i |ψi]3

= 3n−1En[2E[hi|ψi]3 + E[u2
i |ψi]3] = Op(n

−1).

Then we have shown An,2 = Op(n
−1/2) by Lemma A.5. The proof for l = 3, 4 is almost

identical. Summarizing, the work above has shown that

E[An|X1:n, πn] =
1

k2(p− p2)

(
En[hiwi]−

1

k − 1
(k − 1)(E[hiwi]− E[viui])

)
+ op(1)

=
1

k2(p− p2)
E[viui] + op(1) =

E[Cov(h,w|ψ)]

a(k − a)
+ op(1).

Next, we claim that Var(An|X1:n, πn) = op(1). Define ∆h,g = k−1
∑

i∈g
hi(Di−p)
p−p2 , then

Var(An|X1:n, πn) = n−2
∑
g,g′

Cov (∆h,g∆w,g,∆h,g′∆w,g′ |X1:n, πn) .

Note that ∆h,g∆w,g ⊥⊥ ∆h,g′∆w,g′ |X1:n, πn for g 6= g′, since treatment assignments are
(conditionally) independent between groups. Then the on-diagonal terms are

Var(An|X1:n, πn) = n−2
∑
g

Var

((
k−1

∑
i∈g

hi(Di − p)
p− p2

)(
k−1

∑
i∈g

wi(Di − p)
p− p2

)∣∣∣∣X1:n, πn

)

= n−2k−4(p− p)−4
∑
g

Var

(∑
i,j∈g

hiwj(Di − p)(Dj − p)
∣∣∣∣X1:n, πn

)
.
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The inner variance term can be expanded as

∑
i,j∈g

∑
s,t∈g

hiwjhswt Cov

(
(Di − p)(Dj − p), (Ds − p)(Dt − p)

∣∣∣∣X1:n, πn

)
.

We have |Cov((Di − p)(Dj − p), (Ds − p)(Dt − p)|X1:n, πn)| ≤ 2 since |(Di − p)| ≤ 1 for
all i ∈ [n]. Using Lemma 9.17 in Cytrynbaum (2022), the previous display is bounded
above by

∑
i,j∈g

∑
s,t∈g |hiwjhswt| · 2 ≤ 2k3

∑
i∈g(h

4
i + w4

i ). Putting this all together,

Var(An|X1:n, πn) ≤ 2n−2k−4(p− p)−4k3
∑
g

∑
i∈g

(h4
i + w4

i )

= 2n−1k−1(p− p)−4En[h4
i + w4

i ] = Op(n
−1)

By conditional Markov, this shows that An −E[An|X1:n, πn] = Op(n
−1/2). Then we have

shown that An = E[Cov(h,w|ψ)]
a(k−a)

+ op(1).
Finally, we consider Cn. Note that g,D1:n ∈ σ(X1:n, πn, τ) and E[εdi |X1:n, πn, τ ] =

E[εdi |Xi] = 0 for d = 0, 1 by Lemma 9.21 of Cytrynbaum (2022), so we haveE[Cn|X1:n, πn, τ ] =

0. Next, we claim that E[C2
n|X1:n, πn, τ ] = Op(n

−1). Note that C2
n can be written

1

n2k4

∑
g,g′

(∑
i,j∈g

∑
s,t∈g′

hi(Di − p)
p− p2

(
Djε

1
j

p
−

(1−Dj)ε
0
j

1− p

)
hs(Ds − p)
p− p2

(
Dtε

1
t

p
− (1−Dt)ε

0
t

1− p

))
.

We have E[εdj ε
d′
t |X1:n, πn, τ ] = E[εdj |Xj]E[εd

′
t |Xt] = 0 for any j 6= t by Lemma 9.21 of

Cytrynbaum (2022). By group disjointness, the term E[C2
n|X1:n, πn, τ ] simplifies to

1

n2k4

∑
g

(∑
i,j,s∈g

hi(Di − p)
p− p2

hs(Ds − p)
p− p2

E

[(
Djε

1
j

p
−

(1−Dj)ε
0
j

1− p

)2 ∣∣∣∣X1:n, πn, τ

])
.

We have E[(εdi )
2|X1:n, πn, τ ] = E[(εdi )

2|Xi] = σ2
d(Xi). Then by Young’s inequality and

Lemma 9.21 of the paper above

E

[(
Djε

1
j

p
−

(1−Dj)ε
0
j

1− p

)2 ∣∣∣∣X1:n, πn, τ

]
≤ 2(p ∧ (1− p))−1(σ2

1(Xj) + σ2
0(Xj)).

Taking the absolute value of the second to last display and using triangle inequality gives
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the upper bound

2[n2k4(p− p2)2(p ∧ (1− p))]−1
∑
g

(∑
i,j,s∈g

|hihs|(σ2
1(Xj) + σ2

0(Xj))

)

.n−2
∑
g

(∑
i,j,s∈g

|hihs|2 + (σ2
1(Xj) + σ2

0(Xj))
2

)
≤n−1k2En[(σ2

1(Xi) + σ2
0(Xi))

2] + n−2k
∑
g

∑
i,s∈g

|hihs|2.

By Young’s inequality and assumptionE[En[(σ2
1(Xi)+σ

2
0(Xi))

2]] ≤ 2E[σ2
1(Xi)

2+σ2
0(Xi)

2] <

∞. For the second term, using Jensen we have

n−1
∑
g

∑
i,s∈g

|hihs|2 = n−1
∑
g

(∑
i∈g

|hi|2
)2

≤ kn−1En[h4
i ] = Op(1).

Then we have shown that E[C2
n|X1:n, πn, τ ] = Op(n

−1), so by conditional Markov inequal-
ity in Lemma A.5, Cn = Op(n

−1/2). This finishes the proof.

Lemma A.8 (Partialled Lin). Under assumptions, En[ȟizi] = op(1). Also, we have

En[Diȟiȟ
′
i] =

p(k − 1)

k
E[Var(h|ψ)] + op(1) En[ȟiȟ

′
i] =

k − 1

k
E[Var(h|ψ)] + op(1)

En[DiȟiYi] =
p(k − 1)

k
E[Cov(h,m1|ψ)] + op(1)

En[(1−Di)ȟiYi] =
(1− p)(k − 1)

k
E[Cov(h,m0|ψ)] + op(1).

Proof. First, observe that

ȟi = hi − k−1
∑
j∈g(i)

hj =
k − 1

k
· hi − k−1

∑
j∈g(i)\{i}

hj = k−1
∑

j∈g(i)\{i}

(hi − hj).

Note that En[Diȟiȟi] = En[(Di − p)ȟiȟi] + pEn[ȟiȟi]. We claim that En[(Di − p)ȟiȟi] =

Op(n
−1/2). For 1 ≤ t, t′ ≤ dh, by Lemma A.2 of Cytrynbaum (2022) and Cauchy-Schwarz

we have Var(
√
nEn[(Di − p)ȟitȟit′ ]|X1:n, πn) ≤ 2En[ȟ2

itȟ
2
it′ ] ≤ 2En[ȟ4

it]
1/2En[ȟ4

it′ ]
1/2. Next,

note that by Jensen’s followed by Young’s inequality

ȟ4
it =

(k − 1)4

k4

 1

k − 1

∑
j∈g(i)\{i}

(hit − hjt)

4

≤ (k − 1)3

k4

∑
j∈g(i)\{i}

(hit − hjt)4

≤ 8
(k − 1)3

k4

∑
j∈g(i)\{i}

(h4
it + h4

jt) ≤ 8
(k − 1)3

k4

(k − 1)h4
it +

∑
j∈g(i)\{i}

h4
jt

 .
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By counting, we have En
[∑

j∈g(i)\{i} h
4
jt

]
= (k − 1)En[h4

it]. Putting this all together,

En[ȟ4
it] . En[h4

it] = Op(1). Then Var(
√
nEn[(Di − p)ȟitȟit′ ]|X1:n, πn) = Op(1) so that

En[(Di − p)ȟitȟit′ ] = Op(n
−1/2) by Lemma A.5. Then it suffices to show the claim for

En[ȟiȟi]. Let fit = E[ht(Xi)|ψi] and write hit = fit + uit. Then we have

En[ȟitȟit′ ] =
1

nk2

∑
i

 ∑
j∈g(i)\{i}

hit − hjt

 ∑
l∈g(i)\{i}

hit′ − hlt′


=

1

nk2

∑
i

Di

∑
j,l∈g(i)\{i}

(hit − hjt)(hit′ − hlt′).

We can expand the expression above as

1

nk2

∑
i

∑
j,l∈g(i)\{i}

[
(fit − fjt)(fit′ − flt′) + (fit − fjt)(uit′ − ult′)

+ (uit − ujt)(fit′ − flt′) + (uit − ujt)(uit′ − ult′)
]
≡ An +Bn + Cn +Dn.

First consider An. By the Lipschitz assumption in 3.1 and Young’s inequality

|An| ≤
1

nk2

∑
i

∑
j,l∈g\{i}

|fit − fjt||fit′ − flt′| .
1

nk2

∑
i

∑
j,l∈g\{i}

|ψi − ψj|2|ψi − ψl|2

≤ 2

nk2

∑
i

∑
j,l∈g\{i}

(|ψi − ψj|22 + |ψi − ψl|22) =
4(k − 1)

nk2

∑
g

∑
i,j∈g

|ψi − ψj|22 = op(1).

The second to last equality by counting and the final equality by Assumption 2.1. Next
consider Bn. Note that each g ∈ σ(ψ1:n, πn) and E[uit|ψ1:n, πn] = E[uit|ψi] = 0, so
E[Bn|ψ1:n, πn] = 0. We can rewrite the sum∑

i

∑
j,l∈g\{i}

(fit − fjt)(uit′ − ult′) =
∑
g

∑
i,j,l∈g
j,l 6=i

(fit − fjt)(uit′ − ult′).

Then we may compute Var(
√
nBn|ψ1:n, πn) = E[nB2

n|ψ1:n, πn] as follows. By Lemma 9.21
of Cytrynbaum (2022), E[uit′ujt′|ψ1:n, πn] = 0 for any g(i) 6= g(j), so we only consider
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the diagonal

0 ≤ 1

nk4

∑
g

∑
i,j,l∈g
j,l 6=i

∑
a,b,c∈g
b,c6=a

E[(fit − fjt)(fat − fbt)(uit′ − ult′)(uat′ − uct′)|ψ1:n, πn]

≤ n−1
∑
g

∑
i,j,l∈g
j,l 6=i

∑
a,b,c∈g
b,c6=a

|fit − fjt||fat − fbt||E[(uit′ − ult′)(uat′ − uct′)|ψ1:n, πn]|

. n−1
∑
g

max
i,j∈g
|ψi − ψj|22

∑
i,j,l∈g
j,l 6=i

∑
a,b,c∈g
b,c6=a

|E[(uit′ − ult′)(uat′ − uct′)|ψ1:n, πn]|.

Next, by Lemma 9.21 of Cytrynbaum (2022), E[(uit′ − ult′)(uat′ − uct′)|ψ1:n, πn] is

δaiE[u2
it′ |ψi]− δlaE[u2

at′ |ψa]− δciE[u2
it′ |ψi] + δlcE[u2

lt′ |ψl].

Applying the triangle inequality and summing out using this relation, the above is

≤ 4k(k − 1)3

n

∑
g

max
i,j∈g
|ψi − ψj|22

∑
i∈g

E[u2
it′|ψi]

. n−1
∑
g

(
max
i,j∈g
|ψi − ψj|42 +

∑
i∈g

E[u2
it′ |ψi]2

)
≤ n−1

∑
g

Diam(Supp(ψ))2
∑
i,j∈g

|ψi − ψj|22 + En[E[u2
it′|ψi]2].

We claim that E[u4
it′ ] < ∞. Note that E[u4

it′ ] = E[(hit′ − fit′)4] ≤ 8E[h4
it′ ] + 8E[f 4

it′ ] by
Young’s inequality. We have E[h4

it′ ] < ∞ by assumption. Note that E[f 4
it′ ] ≤ Cf |ψi|4 ≤

Cf Diam(Supp(ψ))4 <∞ by Assumption 3.1, with Lipschitz constant Cf . Then E[u4
it′ ] <

∞, so E[En[E[u2
it′ |ψi]2]] = E[E[u2

it′ |ψi]2] ≤ E[u4
it′ ] < ∞. The inequality follows by

conditional Jensen and tower law. Then En[E[u2
it′|ψi]2 = Op(1) by Markov inequality.

Then using Assumption 2.1 in the display above, we have shown E[nB2
n|ψ1:n, πn] = Op(1)

and by Lemma A.5 we have shown Bn = Op(n
−1/2). We have Cn = Op(n

−1/2) by
symmetry. Finally, considerDn. By Lemma 9.21 of Cytrynbaum (2022) compute E[(uit−
ujt)(uit′ − ult′)|ψ1:n, πn] = E[uituit′|ψi] + E[ujtujt′ |ψj]δjl for j, l 6= i. Then we calculate

E[Dn|ψ1:n, πn] =
1

nk2

∑
i

∑
j,l∈g(i)\{i}

E[uituit′|ψi] + E[ujtujt′ |ψj]1(j = l)

=
1

nk2

∑
i

(k − 1)2E[uituit′|ψi] +
1

nk2

∑
i

∑
j∈g(i)\{i}

E[ujtujt′|ψj]

=
(k − 1)2

nk2

∑
i

E[uituit′|ψi] +
k − 1

nk2

∑
i

E[uituit′|ψi] =
k(k − 1)

nk2

∑
i

E[uituit′|ψi].

Now E[E[uituit′ |ψi]2] ≤ E[u2
itu

2
it′ ] ≤ 2E[u4

it] + 2E[u4
it′ ] < ∞ by Jensen, tower law,
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Young’s, and work above. Then by Chebyshev (k−1)
nk

∑
iE[uituit′ |ψi] = k−1

k
E[uituit′ ] +

Op(n
−1/2) = k−1

k
E[Cov(hit, hit′|ψi)] + Op(n

−1/2). Then we have shown E[Dn|ψ1:n, πn] =
k−1
k
E[Cov(hit, hit′ |ψi)] + Op(n

−1/2). Next, we claim that Var(
√
nDn|ψ1:n, πn) = Op(1).

Following the steps above for Bn replacing terms shows that Var(
√
nDn|ψ1:n, πn) is

0 ≤ 1

nk4

∑
g

∑
i,j,l∈g
j,l 6=i

∑
a,b,c∈g
b,c6=a

Cov((uit − ujt)(uit′ − ult′), (uat − ubt)(uat′ − uct′)|ψ1:n, πn).

For any variables A,B, |Cov(A,B)| ≤ |E[AB]| + |E[A]E[B]| ≤ 2|A|2|B|2 by Cauchy-
Schwarz and increasing Lp(P) norms. By Young’s inequality, (a− b)4 ≤ 8(a4 + b4) for any
a, b ∈ R. Then using these facts

|Cov((uit − ujt)(uit′ − ult′), (uat − ubt)(uat′ − uct′)|ψ1:n, πn)|

≤ 2E[(uit − ujt)2(uit′ − ult′)2|ψ1:n, πn]1/2E[(uat − ubt)2(uat′ − uct′)2|ψ1:n, πn]1/2

≤ 4E[(uit − ujt)2(uit′ − ult′)2|ψ1:n, πn] + 4E[(uat − ubt)2(uat′ − uct′)2|ψ1:n, πn]

≤ 2E[(uit − ujt)4 + (uit′ − ult′)4|ψ1:n, πn] + 2E[(uat − ubt)4 + (uat′ − uct′)4|ψ1:n, πn]

≤ 16(E[u4
it + u4

jt + u4
it′ + u4

lt′ |ψ1:n, πn] + E[u4
at + u4

bt + uat′ + u4
ct′ |ψ1:n, πn])

= 16(2E[u4
it|ψi] + E[u4

jt|ψj] + E[u4
lt′ |ψl] + 2E[u4

at|ψa] + E[u4
bt|ψb] + E[u4

ct′|ψc]).

Plugging this bound in above and summing out gives

Var(
√
nDn|ψ1:n, πn) ≤ 32k5

nk4

∑
g

∑
i∈g

E[u4
it|ψi] � En[E[u4

it|ψi]] = Op(1).

The final equality by Markov since E[u4
it] < ∞. Then by conditional Markov A.5 we

have Dn = k−1
k
E[Cov(hit, hit′ |ψi)] + Op(n

−1/2). Since t, t′ were arbirary, this shows
En[ȟiȟ

′
i] = E[Var(h|ψ)] + op(1).

Next, consider En[DiȟiYi] = En[(Di− p)ȟiYi(1)] + pEn[ȟiYi(1)]. We claim that En[(Di−
p)ȟiYi(1)] = Op(n

−1/2). For 1 ≤ t ≤ dh, by Lemma A.2 of Cytrynbaum (2023), and
Cauchy-Schwarz

Var(
√
nEn[(Di − p)ȟitYi(1)]|X1:n, Y (1)1:n, πn) ≤ 2En[ȟ2

itYi(1)2] ≤ 2En[ȟ4
it]

1/2En[Yi(1)4]1/2.

Note that En[Yi(1)4] = Op(1) by Markov inequality and Assumption 3.1 and En[ȟ4
it] =

Op(1) was shown above. Then by Lemma A.5 (conditional Markov), this shows the
claim. Then it suffices to analyze En[ȟiYi(1)]. Let gi = E[Yi(1)|ψi] and vi = Yi(1) − gi
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with E[vi|ψi] = 0. Then as above we may expand

En[ȟiYi(1)] =
1

nk

∑
i

 ∑
j∈g(i)\{i}

fit − fjt + uit − ujt

 (gi + vi)

=
1

nk

∑
i

∑
j∈g(i)\{i}

(fit − fjt)gi + (fit − fjt)vi + (uit − ujt)gi + (uit − ujt)vi

≡ Hn + Jn +Kn + Ln.

First consider Hn. By Assumption 3.1, ψ → g(ψ) is continuous and Supp(ψ) ⊆ B̄(0, K)

compact, so supψ∈B̄(0,K) |g(ψ)| ≡ K ′ <∞ and |gi| ≤ K ′ a.s. Then we have

|Hn| . n−1
∑
i

∑
j∈g(i)\{i}

|ψi − ψj|2|gi| . n−1
∑
g

∑
i,j∈g

|ψi − ψj|2 = op(1).

For the final equality, note that here we have the unsquared norm, different from As-
sumption 2.1. Proposition 8.6 of Cytrynbaum (2022) showed that this quantity is also
op(1). By substituting zi for gi, which satisfies the same conditions, this also shows that
En[ziȟ

′
i] = op(1). The proof that Jn, Kn = Op(n

−1/2) are similar to the terms Bn, Cn

above. Next, consider Ln. We have

E[Ln|ψ1:n, πn] =
1

nk

∑
i

∑
j∈g(i)\{i}

E[(uit − ujt)vi|ψ1:n, πn]

=
1

nk

∑
i

∑
j∈g(i)\{i}

E[uitvi|ψi] =
k − 1

k
En[E[uitvi|ψi]]

=
k − 1

k
E[Cov(hit, Yi(1)|ψi)] +Op(n

−1/2).

The second equality follows since j 6= i and by Lemma 9.21 of Cytrynbaum (2022).
The third equality by counting. For the last equality, note that by Jensen, tower law,
Young’s inequality E[E[uitvi|ψi]2] ≤ E[u2

itv
2
i ] ≤ (1/2)(E[u4

it]+E[v4
i ]). We showed E[u4

it] <

∞ above and a similar proof applies to vi. Then the final equality above follows by
Chebyshev. The proof that Var(Ln|ψ1:n, πn) = Op(n

−1/2) is similar to our analysis of Dn

above. Then we have shown En[DiȟiYi] = pk−1
k
E[Cov(h, Y (1)|ψ)]+op(1). The conclusion

for En[(1−Di)ȟiYi] follows by symmetry. This finishes the proof.
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